

Annual Plume Status Report

California Institution for Men Plume October 2025

CONTAMINANTS

The primary contaminant is tetrachloroethene (PCE). The California maximum contaminant level (MCL) for PCE is 5 micrograms per liter (µgl). The highest concentration of PCE measured historically within the plume is approximately 1,990 µgl.¹ Other contaminants of concern include the following volatile organic compounds (VOCs): trichloroethene (TCE), 1,2-dichloroethene, bromodichloromethane, 1,1,1-trichloroethane, carbon tetrachloride, chloroform, and toluene.

LOCATION

The California Institution for Men (CIM) is a state correctional facility located in the City of Chino. The property is approximately 1,500 acres and is bounded by Eucalyptus Avenue to the north, Euclid Avenue to the east, Kimball Avenue to the south, and Central Avenue to the west. The plume is located predominantly beneath the northwestern portion of the CIM property. Exhibit 1 shows the spatial extent of the PCE plume, as delineated by the Chino Basin Watermaster (Watermaster) in the 2024 State of the Basin Report.² The extent of the plume with detectable PCE concentrations greater than 0.5 µgl is about 4,000 feet long and 3,000 feet wide.

SITE HISTORY

The State of California Department of Corrections and Rehabilitation (State) has operated CIM since 1939. The primary uses of the CIM property include agricultural operations, inmate housing, and correctional facilities. The Heman G. Stark Youth Correctional Facility (Youth Correctional Facility) occupies the eastern portion of the CIM property. There are eleven drinking water supply wells located on the CIM property; six of these wells are actively producing groundwater as of 2025. The CIM operates the drinking water supply wells, a potable water distribution system, and a treatment plant to provide drinking water supply to the CIM facilities, Youth Correctional Facility, and the California Institution for Women. The land surrounding the CIM property was historically used for agriculture and dairy activities but has rapidly developed in recent years for residential and commercial uses.

¹ Based on a water quality sample collected at MW-7 in 1998.

² West Yost. (2025). *Chino Basin Optimum Basin Management Program-2024 State of the Basin Report*. Prepared for the Chino Basin Watermaster. September 2025.

REGULATORY ORDERS

No regulatory orders for site remediation and monitoring were issued by the Santa Ana Regional Water Quality Control Board (Santa Ana Water Board) for PCE contamination. The State conducted voluntary cleanup and monitoring under the Santa Ana Water Board's direction from 1992 to 2009. On December 17, 2009, the Santa Ana Water Board determined "No Further Action" was required for remediation and monitoring.

Unrelated to the PCE contamination, there are three leaking underground storage tank (LUST) cleanup sites located on the CIM property that are regulated under the State Water Resources Control Board (State Board) Underground Storage Tank (UST) program. The UST program directs Regional Water Boards to implement a monitoring plan and oversee site closures under the State Board's Low Threat Closure Policy (LTCP). There are no regulatory orders for groundwater remediation or monitoring at the CIM LUST sites. Two of the three sites met the requirements for site closure under the LTCP and were closed by the State Board in 2006. The remaining LUST site is the CIM State Garage LUST, which is currently open with ongoing monitoring and remediation for petroleum hydrocarbons. The CIM State Garage LUST is included in Exhibit 1.

REGULATORY AND MONITORING HISTORY

In 1990, PCE was detected at a concentration of 26 μ gl at CIM drinking water supply Well 1. This prompted the California Department of Health Services (CDHS), now the California State Board Division of Drinking Water (DDW), to direct CIM to stop using the well as a source of drinking water. The detection of PCE concentrations in two other CIM drinking water supply wells (1A and 11A) triggered the Santa Ana Water Board to request an investigation of the source and extent of the onsite PCE contamination. Following an initial investigation, the Santa Ana Water Board sent the State a written request to perform a subsurface investigation to define the vertical and lateral extent of PCE in soil at four locations where PCE was detected in soil vapor samples during the investigation.

The Phase I Site Assessment was performed at the CIM site in 1992, and included a review of CIM's history, operations, and chemical use.³ The investigation identified five potential sites where VOCs were used and could have impacted soil and groundwater. These areas included: the old laundry building, the furniture factory, the vocational shops, the state garage, and the powerhouse.

The Phase II Site Assessment was performed from 1992 to 1994 to assess the presence and concentrations of VOCs in soil vapor, soil, and groundwater beneath the five potential sites identified in Phase I.⁴ Seven groundwater monitoring wells were installed and sampled as part of this investigation. The results from the soil and the groundwater investigations showed low concentrations of contaminants throughout the site, with concentrations of PCE in groundwater samples from monitoring wells ranging from 0.6 to 19 µgl. The old laundry facility and nearby areas had the highest concentration of PCE in soil samples and was thus identified as the most likely principal source of VOCs. A Phase III assessment was performed in 1996 to further investigate the distributions of VOC contamination beneath the CIM and included depth-discrete groundwater sampling at four exploratory boreholes. The investigation showed three distinct aquifer zones below the CIM, and that PCE and other VOCs were migrating laterally from the shallow zone to the intermediate and deep zones where the drinking water supply wells are screened.⁵ Between August 1994 and May 2001, a network of 43 monitoring wells at varying depths in the shallow, intermediate, and deep aquifer zones were constructed.

WEST YOST

³ Geomatrix Consultants, Inc. (1992). *Report of Phase I Investigation, VOCs in Soil and Groundwater, Department of Corrections California Institution for Men, Chino*. April 20, 1992.

⁴ Geomatrix Consultants, Inc. (1994). *Phase II Assessment of VOCs in Soil and Groundwater, California Institution for Men Chino, California.* Prepared for the Department of General Services Development and Management. October 4, 1994.

⁵ Geomatrix Consultants, Inc. (1997). *Phase III Groundwater Assessment and Remediation Planning Report, California Institution for Men, Chino*. July 21, 1997.

In 1997, the Santa Ana Water Board approved an interim pump-and-treat system for the hydraulic containment of VOC-affected groundwater using Well 1. In 2001, construction began on two new CIM water supply wells (Wells 14 and 15) and associated pipelines to prevent VOC-impacted groundwater at the southern end of the plume from migrating away from the site. Additionally, two agricultural wells were destroyed to protect the deeper aquifer from the downward movement of VOC contaminated groundwater due to pumping.

The 43 monitoring wells were sampled intermittently through 2007 to analyze the extent and concentrations of VOCs in the groundwater beneath the CIM property. It was determined that the VOC impacts to groundwater were limited to the source area and immediately downgradient. Furthermore, the plume had not and was not expected to migrate off the property. A final monitoring event was conducted by the State in January 2007, which included groundwater quality sampling at 39 water supply and monitoring wells at the CIM property. The results of this and previous monitoring events indicated that despite the PCE concentrations exceeding the MCL at three monitoring wells, PCE concentrations in the shallow groundwater were decreasing or remaining stable. PCE concentrations in the deeper aquifer at the CIM drinking water supply wells had been below the MCL since April 2003 with a few exceptions in early/mid 2006. Moreover, there had been no detections of TCE or other VOCs above the MCL in groundwater samples since December 2002. Based on this monitoring through 2007, in February 2007 the State submitted a request to the Santa Ana Water Board for a No Further Action (NFA) finding for groundwater remediation and monitoring at the CIM site. On December 17, 2009, the Santa Ana Water Board issued a determination of NFA for the CIM site.

In March 2019, the Santa Ana Water Board formally rejected the State's request for closure of the State Garage LUST site located northwest of the CIM drinking water supply Well 1A within the center of the PCE plume, and requested further assessment to determine if fuel-related contaminants beneath the site could impact downgradient Well 1A.⁸ An investigation was completed in May 2020 and a report on the monitoring and findings was submitted to the Santa Ana Water Board in July 2020.⁹ The investigation concluded that: (1) fuel-related contaminants have decreased several orders of magnitude in the perched aquifer below the State Garage LUST site; and (2) the downgradient extent of the dissolved total petroleum hydrocarbon plume from the site is not migrating and has not impacted the CIM water supply Well 1A. However, the findings indicated that gasoline residue remains in the soil downgradient of the source area. Results from the annual groundwater monitoring event in May 2021 indicated that fuel-related contaminants have decreased, and the plume is not migrating or impacting Well 1A.¹⁰ Due to these findings, the State recommended the State Garage LUST site for closure under the LTCP in August 2021.

⁶ Geomatrix Consultants, Inc. (2007). *January 2007 Groundwater Monitoring PCE Remediation Project California Institution for Men Chino, California*. Prepared for the Department of General Services Real Estate Services Division Project Management Branch. May 17, 2007.

⁷ California Regional Water Quality Control Board, Santa Ana Region (2009). *Determination of No Further Action (NFA), Tetrachloroethylene Remediation Project, California Institution for Men, Chino*. December 17, 2009.

⁸ California Regional Water Quality Control Board, Santa Ana Region. (2019). Response to Soil Vapor Investigation and Path to Closure, California Institution for Men, Garage. March 8, 2019.

⁹ Avocet Environmental, Inc. (2020). *2020 Annual Groundwater Monitoring and Additional Investigations Report California Institution for Men – State Garage*. July 29, 2020.

¹⁰ Avocet Environmental, Inc. (2021). 2021 Annual Groundwater Monitoring Report and Request for Closure. Prepared for California Department of Corrections and Rehabilitation, FPCM – Environmental and Regulatory Compliance Section. August 17, 2021.

REMEDIAL ACTION

In July 1997, the State implemented remediation activities, termed *The PCE Remediation Project*, with an interim remedial measure to pump and treat groundwater from Well 1.¹¹ The groundwater was treated for VOCs using air stripping. Operation of the air stripper continued until 2004, when the permeability of the air stripper packing was compromised by the accumulation of mineral precipitates. During its operation, the pump-and-treat process at Well 1 removed approximately 58 pounds of PCE and TCE collectively. After 2004, both PCE and TCE concentrations were below the MCL in groundwater extracted from Well 1, and pumping continued without treatment with approval from the CDHS and Santa Ana Water Board. A supplemental remedial measure began in 2001 which included the construction of two new CIM water supply wells (Well 14 and Well 15) located in an area to intercept the toe of the VOC plume, promoting hydraulic containment of the VOCs within the groundwater beneath CIM. Wells 14 and 15 operated without treatment from January 2003 to December 2008; during this time, these two wells removed an additional 14 pounds of PCE and TCE collectively.

The need for remedial action was considered to address elevated levels of PCE in the soil below the old laundry site, but it was determined that it would not be cost-effective in protecting the groundwater quality despite some potential contribution of PCE from the soil to groundwater beneath the site.

Remediation requirements at CIM ended in December 2009 with the Santa Ana Water Board's determination of NFA. Since then, PCE has been periodically detected at concentrations above the MCL at CIM supply Wells 1 and 15. Additionally, other contaminants have been detected above their respective MCLs, including 1,2,3-TCP and nitrate. CIM operates a water treatment plant to remove contaminants for drinking water supply.

MONITORING AND REPORTING

The State conducted voluntary monitoring at CIM from 1992 to 2007 at 43 monitoring wells and 14 water supply wells. Voluntary monitoring ended in December 2009 with the Santa Ana Water Board's determination of NFA. As part of the NFA, the State was required to decommission the monitoring wells located onsite in accordance with California Well Standards (DWR Bulletin No. 74-81). The State decommissioned a majority of these wells and preserved 16 wells to be included in the Watermaster's groundwater-level monitoring program conducted pursuant to the *Optimum Basin Management Program* (OBMP). The location of these wells is included in Exhibit 1.

The CIM continues to monitor groundwater quality at its supply wells as part of its water supply operations under DDW regulations. The State samples the active drinking water supply wells for PCE and TCE quarterly and reports the data to the DDW. Watermaster routinely collects all groundwater-quality data from the DDW's Water Quality Analyses Database for the CIM potable supply wells as part of the OBMP groundwater-quality monitoring program and uses these data to characterize the areal extent and concentration of the PCE plume every two years.¹³

¹¹ Geomatrix Consultants, Inc. (2005). *PCE Remediation Project Report. California Institution for Men.* Prepared for the California Department of General Services. July 2005.

¹² Wildermuth Environmental, Inc. (1999). *Optimum Basin Management Program. Phase I Report*. Prepared for the Chino Basin Watermaster. August 19, 1999.

¹³ https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/EDTlibrary.shtml

RECENT ACTIVITY

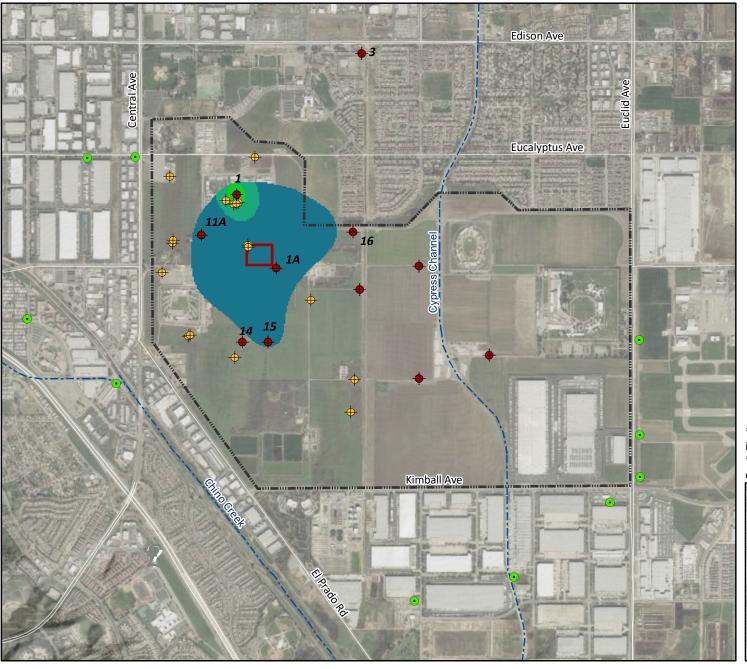
There has been no further regulatory activity associated with PCE contamination monitoring and remediation at CIM since the NFA determination in December 2009.

The most recent characterization of the plume was completed by Watermaster in the 2024 State of the Basin Report (Exhibit 1). Based on available data, the PCE plume remains relatively stable; however, the maximum concentration of PCE near Well 1 has slightly increased to the 10–20 µg/L range during the July 2019 – June 2024 delineation period. Well 1 was inactive from 2018 to mid-2024.

The State continues to sample its drinking water supply wells pursuant to DDW regulations. Table 1 below summarizes the five-year maximum PCE concentration (July 2020 to June 2025) sampled at the CIM drinking water supply wells.

Table 1. Maximum PCE Concentration in CIM Supply Wells between July 2020 and June 2025
, , , , , , , , , , , , , , , , , , ,

Well	Maximum PCE, μgl	Date
1	17	1/24/2024
1A	1.6	11/23/2022
3	ND (<0.5)	all samples during this period
11A	0.98	7/5/2023
15	2.1	11/23/2022
16	ND (<0.5)	all samples during this period


In August 2021, the State submitted the 2021 Annual Groundwater Monitoring Report along with a Request for Closure of the CIM State Garage LUST site under the LTCP. 14 The Santa Ana Water Board did not review the report until spring 2024 and requested updated data to verify that site conditions had not changed since closure was requested in 2021. In December 2024, the State collected water levels at 34 accessible monitoring wells at the site and groundwater samples from 16 monitoring wells, which were analyzed for fuel-related VOCs, as requested by the Santa Ana Water Board. The results of the monitoring event were reported in the 2024 Annual Groundwater Monitoring Report.¹⁵ Overall, the results were consistent with historical findings, indicating that fuel-related VOCs have decreased significantly since 2001 and are not generally detected in groundwater sampled from wells located to the south and west of the State Garage Building. Furthermore, the downgradient extent of the dissolved-phase petroleum hydrocarbon plume has not migrated into production Well 1A. Based on these results, the report once again requested site closure. In April 2025, the Santa Ana Water Board reviewed the submission, concluding that the groundwater results were favorable towards closure. However, the closure request was denied due to the samples results not covering the LCTP criteria. 16 In June 2025, the state resubmitted a Request for Closure for the site addressing the Santa Ana Water Board's comments and demonstrating that current site conditions satisfy the requirements for closure under the LCTP criteria. ¹⁷ The request is currently pending review by the Santa Ana Water Board.

¹⁴ Avocet Environmental, Inc. (2021). *2021 Annual Groundwater Monitoring Report and Request for Closure.* Prepared for California Department of Corrections and Rehabilitation, FPCM – Environmental and Regulatory Compliance Section. August 17, 2021.

¹⁵ Weaver Consultants Group. (2025). *2024 Annual Groundwater Monitoring Report and Request for Low threat Closure.* Prepared for California Department of Corrections and Rehabilitation, FPCM – Environmental and Regulatory Compliance Section. February 5, 2025.

¹⁶ Email Correspondence from the State Waterboard on April 8, 2025.

¹⁷ Weaver Consultants Group. (2025). *Request for Closure California Institution for Men – State Garage.* Prepared for California Department of Corrections and Rehabilitation, FPCM – Environmental and Regulatory Compliance Section. June 11, 2025.

Maximum Concentration (μgL) July 2019 - June 2024

PCE

≤ 5 > 5 to ≤ 10

> 10 to ≤ 20

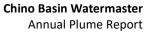
MCL = 5 μgl

(Delineated by Watermaster in the 2024 State of the Basin Report)

- CIM Water Supply Well*
- Other Agency Municipal Water Supply Well
- CIM Monitoring Well Preserved for the Watermaster Groundwater-Level Monitoring Program**
- CIM Property Boundary
- CIM State Garage LUST Boundary
- N → Streams & Flood Control Channels


*Wells are labeled by well name if mentioned in the report

**Some locations have mutliple wells at various depths



Prepared by:

Prepared for:

California Institution for Men (CIM)

PCE Plume

Annual Plume Status Report

General Electric Flatiron Plume October 2025

CONTAMINANTS

The primary contaminant is trichloroethene (TCE). Other contaminants of concern include tetrachloroethylene (PCE), total chromium, and hexavalent chromium. For each of these contaminants, the table below list the California maximum contaminant level (MCL) and maximum concentration detected in groundwater samples from wells within the plume over the last five years.

Table 1. Maximum Concentration of Contaminants of Concern from July 2020 to June 2025

Contaminant	MCL, micrograms per liter (μgl)	Max Concentration, μgl	Sample Date	Well
TCE	5	33,000 ^(a)	April 2021	MW-22A
PCE	5	5,800 ^(a)	July 2020	MW-21
Total Chromium	50	5,930	February 2023	MW-23A
Hexavalent Chromium	10 ^(b)	7,000 ^(a)	February 2023	MW-23A

Notes:

(a) This is the maximum concentration ever measured at a monitoring well in the GE Flatiron plume.

LOCATION

The General Electric (GE) Flatiron TCE plume is located in the northern Chino Basin within the City of Ontario. It extends south-southwest from the former GE Flatiron Facility, located at 234 East Main Street. The Chino Basin Watermaster (Watermaster) last updated its delineation of the plume's extent in the 2024 State of the Basin Report.¹ This characterization is based on the five-year maximum TCE concentration measured between July 2019 and June 2024. Exhibit 1 shows the location and extent of the TCE plume as delineated by Watermaster in 2024. The extent of the plume with TCE concentrations greater than 0.5 μ gl measures approximately 0.6 miles wide and about 2.6 miles long.

SITE HISTORY

GE manufactured clothes irons at the Flatiron Facility from the early 1900s to 1982. During World War II, the facility was also used to manufacture equipment for the U.S. War Department. In 1982, GE closed the facility and sold the property. Since then, ownership has changed several times; the property is currently owned by Ontario Business Park, LLC.

⁽b) The MCL for hexavalent chromium was adopted by the State Water Resources Control Board Division of Drinking Water on October 1, 2024. Prior to that, the MCL for total chromium was used to regulate hexavalent chromium after the initial 2014 MCL of 10 μ gl for hexavalent chromium was invalidated in 2016.

¹ West Yost. (2025). *Optimum Basin Management Program – 2024 State of the Basin Report*. Prepared for the Chino Basin Watermaster. September 2025.

REGULATORY ORDERS

- Investigative Order No. 87-146—Requires the characterization of onsite conditions and groundwater beneath and downgradient of the GE Flatiron site using gas surveys, soil boring installation and sampling, and groundwater monitoring well installation and sampling.
- Waste Discharge Requirements (WDRs) and Monitoring and Reporting Programs (M&RPs)
 Order No. 95-62 and R8-2011-0019 (current)—General WDRs and M&RPs for the discharge of treated water from the pump-and-treat system.

REGULATORY AND MONITORING HISTORY

In 1987, groundwater-quality samples collected from an inactive City of Ontario production well downgradient of the Flatiron Facility had TCE and chromium concentrations that exceeded drinking water regulatory standards. This prompted the Santa Ana Regional Water Quality Control Board (Santa Ana Water Board) to request that GE conduct a Phase I investigation to determine whether the Flatiron Facility was the source of the contamination.

The results of the Phase I investigation prompted the Santa Ana Water Board to issue Investigative Order No. 87-146, requiring GE and West End Investments (the property owner at the time) to characterize onsite conditions and the groundwater flow gradient beneath the Flatiron Facility. The Phase II through V investigations^{2, 3, 4, 5} included soil gas surveys, soil boring installation and sampling, as well as groundwater monitoring well installation and sampling, to define the extent of contaminants in groundwater both on and offsite. The Phase II through V investigations were conducted from 1987 to 1992 and confirmed the presence of a contaminant plume beneath and downgradient of the Flatiron Facility. The investigations also showed that TCE and total dissolved chromium concentrations in groundwater exceeded the California primary MCLs of 5 and 50 µgl, respectively.

In 1993, the results from the multi-phase investigations led to the proposal of an interim remedial measure (IRM) for groundwater contamination. Local and regional-scale numerical groundwater models were developed to support the IRM design and evaluate the use of extraction wells for hydraulic containment near the downgradient extent of the plume. In December 1993, extraction well EW-01 was completed along with a monitoring well and three nearby piezometers to serve as observation points during aquifer testing. The IRM began in 1996 and involved pumping groundwater from EW-01, treating it at GE Flatiron's groundwater treatment system to remove TCE and other contaminants of concern, and discharging the treated water to the Ely Basins for groundwater recharge. Discharge to the Ely Basins was regulated under WDR Order No. 95-62, issued by the Santa Ana Water Board.

In 1995, a feasibility study was completed to evaluate groundwater and soil remediation alternatives. In October 1997, the Santa Ana Water Board approved a groundwater remediation alternative that included

² Bechtel Environmental, Inc. (1989). *Phase II Soil and Groundwater Investigation, Former GE Flatiron Manufacturing, Ontario, California*. January 1989.

³ Bechtel Environmental, Inc. (1990). *Phase III Investigation Report, Former GE Flatiron Manufacturing, Ontario, California*. August 1990.

⁴ Geomatrix Consultants, Inc. and Beak Consultants Ltd. (1992). *Phase IV Investigation Report, 234 East Main Street and Vicinity, Ontario, California*. January 1992.

⁵ Geomatrix Consultants, Inc. and Beak Consultants Ltd. (1993). *Phase V Investigation Report, 234 East Main Street and Vicinity, Ontario, California*. January 1993.

⁶ Geomatrix Consultants, Inc. (1995). Feasibility Study Report, 234 East Main Street and Vicinity, Ontario, California. November 1995.

the continued use of extraction well EW-01 and the construction of an additional extraction well (EW-02) near the center of the plume. EW-02 was constructed in 1999 and began operation in 2002.

In 2003, GE constructed a soil vapor extraction (SVE) system to remove VOC mass from impacted site soils. The system, consisting of five SVE wells and a treatment system was completed and began operation the same year.

Due to the Inland Empire Utilities Agency (IEUA) and Watermaster's increased use of the Ely Basins for stormwater, recycled water, and imported water recharge, capacity eventually became insufficient to accommodate GE's discharge into the Ely Basins. In 2005, GE began evaluating alternative discharge options for its treated groundwater and decided to install an injection well field at 2025 South Bon View Avenue to receive the treated groundwater. In 2011, the Santa Ana Water Board approved WDR Order R8-2011-0019 to modify the point of discharge for the treated groundwater from the Ely Basins to the injection wells at this site. The 2011 WDR defines the discharge prohibitions, effluent limitations, and required monitoring and reporting program.

In 2015, GE submitted a work plan to the Santa Ana Water Board outlining a program to evaluate the effectiveness of existing remedial measures and to provide recommendations for additional investigation or remediation. Implementation of the work plan began in 2016 with the drilling of four borings to collect discrete-depth soil and groundwater samples, which were analyzed for TCE, PCE, total dissolved chromium, and hexavalent chromium.

From May 2016 to March 2017, four additional monitoring well clusters (MW-21 through MW-24) were constructed at the upgradient end of the plume as part of the supplemental remedial investigation activities. Since monitoring began at these well, the highest concentrations of PCE, TCE, total dissolved chromium, and hexavalent chromium associated with the plume have been detected at these wells (specifically, MW-21 through MW-23).

In 2016, the Santa Ana Water Board required the development of a conceptual site model incorporating all historical data and new information from recent investigations. This model was intended to be used to develop a framework to identify data gaps and guide future decisions on investigation, monitoring, and remedial actions.⁹

A critical component of the conceptual site model, as highlighted by the Santa Ana Water Board, was the installation of a sentinel monitoring well downgradient of the plume. On June 22, 2016, GE submitted a work plan to the Santa Ana Water Board detailing the plan and schedule for constructing a new-multi-depth well cluster (MW-19) to further assess the dissolved-phase chromium and VOC concentrations downgradient of the known plume extent. The first sampling event at MW-19 in January 2017 indicated that TCE concentrations in the shallow casing exceeded the MCL. This finding prompted the Santa Ana Water Board to request the construction of an additional monitoring well cluster downgradient of MW-19 and upgradient of the City of Chino's municipal production well (Chino-11) to further evaluate the plume's extent. On November 14, 2016, GE submitted a work plan for the construction of well cluster MW-20, to be located approximately 420 feet upgradient from Chino-11. Construction of the well cluster was completed in May 2017. The first sampling event at MW-20 in July 2017 indicated that TCE in the intermediate-depth casing (MW-20B) exceeded the MCL.

_

⁷ Santa Ana Regional Water Quality Control Board. (2011). *Issuance of Waste Discharge Requirements for General Electric Company, GE Francis Water Treatment Plant, San Bernardino County, Order No. R8-2011-0019*. April 22, 2011.

⁸ Amec Foster Wheeler. (2015). *Work Plan for Supplemental Remedial Investigation, 234 East Main Street and Vicinity, Ontario California*. Prepared for General Electric Company. March 30, 2015.

⁹ Amec Foster Wheeler. (2016). 2016 Conceptual Site Model, Former General Electric Company Housewares Site 234 East Main Street, Ontario, California. Prepared for General Electric Company. October 4, 2016.

¹⁰ Amec Forster Wheeler. (2016). Work Plan for Installation of Cross-Gradient Monitoring Well Clusters, General Electric Company Former Flatiron Facility. Prepared for General Electric Company. August 15, 2016.

¹¹ Amec Forster Wheeler. (2016). *Work Plan for Installation of Additional Sentinel Monitoring Well* Cluster, General Electric Company Former Flatiron Facility. Prepared for General Electric Company. November 14, 2016.

In July 2021, the City of Chino wrote a letter to the Santa Ana Water Board requesting information on the migration and remediation of the GE Flatiron plume and to investigate whether Chino-11, located directly downgradient of the plume is, or will be, impacted. The State of California Division of Drinking Water (DDW) recommended Chino-11 be sampled for TCE and PCE that potentially migrated from the Flatiron plume to the well. The results showed TCE concentrations above the MCL. In October 2021, the Santa Ana Water Board responded to the City of Chino acknowledging that the current plume extraction well network does not adequately address plume migration and that the TCE contamination is likely from the migration of the GE Flatiron plume.¹²

The Santa Ana Water Board requested that GE install an additional monitoring well cluster downgradient of Chino-11 to further delineate the plume's extent and asked that it be constructed prior to the proposed start-up of Chino-11 since operating the well could complicate the investigation and potentially draw the plume into deeper zones. On August 30, 2021, GE submitted a *Work Plan for Groundwater Investigation Downgradient of Chino-11 and Engineering Studies for Installation of Groundwater Extraction Well EW-03* to the Santa Ana Water Board. The objectives of the work plan were to evaluate whether the site-related plume of TCE and hexavalent chromium extends to the area downgradient of Chino-11 by constructing a new well cluster and to determine the optimum location for a third extraction well between wells EW-01 and EW-02. In September 2022 GE submitted a *Technical Report for Groundwater Investigation Downgradient of Chino 11* presenting results from the investigation. GE installed well cluster MW-25 with three discrete-depth monitoring wells (A, B, C). PCE was not detected in any groundwater samples. TCE was detected only in MW-25C at a concentration of 3.8 μgl and hexavalent chromium was detected in all three wells at concentrations ranging from 9.8-13 μgl. These values are similar to historical concentrations in monitoring wells upgradient of the GE Flatiron site.

REMEDIAL ACTION

Groundwater

In 1996, GE began operation of a groundwater treatment system located at 501 West Francis Street in Ontario, CA. Its two extraction wells (EW-01 and EW-02) began operating in 1996 and 2002, respectively, and are intended to prevent migration of the plume. EW-01 pumps at an approximate rate of 850 gallons per minute (gpm), and EW-02 pumps at a rate of approximately 600 gpm, although the pumping rate at EW-01 is often reduced due to low groundwater levels. Groundwater pumped from the extraction wells is conveyed by separate pipelines to the treatment system where it is combined into a single stream and treated. The treatment process includes ion exchange resin to remove chromium, followed by liquid-phase granular activated carbon to remove VOCs. As specified in WDR Order No. R8-2011-0019, the treated discharge must maintain average monthly concentrations of TCE, PCE, 1,1,1-TCA, and chromium below their respective MCLs of 5, 5, 200, and 50 µgl. Currently, three injection wells (IW-01, IW-02, and IW-03) are used to inject treated water into the Chino Basin. Exhibit 1 shows the locations of the extraction wells, the treatment system facility, and the injection well field. In 2022, GE initiated planning to construct a third well, EW-03, to increase groundwater extraction and extend the operational lifespan of EW-01 and EW-02. In March 2024, B. Kueper & Associates, Ltd. (BKA) submitted a report on the development of a groundwater flow model of the GE Flatiron and GE Test Cell

¹² Santa Ana Water Board. (2021). Response to the City of Chino's Letter regarding General Electric Flatiron Contaminant Plume for GE Flatiron. Letter dated October 18, 2021.

¹³ Wood Environment & Infrastructure Solutions, Inc. (2021). Work Plan for Groundwater Investigation. Downgradient of Chino 11 and Engineering Studies for Installation of Groundwater Extraction Well EW-03. Prepared for General Electric Company. August 30, 2021.

¹⁴ Wood Environment & Infrastructure Solutions, Inc. (2022). *Technical Report for Groundwater Investigation Downgradient of Chino 11*. Prepared for General Electric Company. September 1, 2022.

area that they prepared for GE.¹⁵ The model will be used to quantitatively assess and predict groundwater flow conditions in the vicinity of the GE Flatiron and GE Test Cell sites. The model was developed using the Telescopic Mesh Refinement technique that built upon the 2007 Chino Basin Model (which was publicly available at the time) developed by Wildermuth Environmental for the Watermaster. The report details the development and calibration of this groundwater flow model for the GE Flatiron and GE Test Cell area.

In April 2024, a revised design was submitted for EW-03 to reflect the final location of the well.¹⁶ GE was unable acquire any of the original proposed properties after negotiating with multiple owners and making multiple purchase offers. EW-03 will be constructed on the same 501 West Francis Street property where extraction well EW-01 and the groundwater treatment facility are located. There is no schedule yet for the construction of EW-03.

In November 2023, GE submitted a letter to the Santa Ana Water Board of their plan to construct an additional injection well, IW-04, at the Bon View Park Injection Well Field.¹⁷ There has been no public updates on the status or schedule of the construction on IW-04 since.

Soil

In 2003, in accordance with the *Draft Remedial Action Plan*, GE began operating a soil vapor extraction (SVE) system, on the east side of the property to treat TCE, PCE, and other VOCs in the soil. ^{18,19} This SVE system, termed SVE1, consisted of five onsite SVE wells that extracted VOC-impacted vapors from shallow soil. In 2007, GE constructed three additional SVE wells, which were later connected to the SVE1 system. ²⁰

Between 2019 and 2020, GE expanded the treatment system to limit potential offsite soil vapor migration and groundwater impacts. This expansion included two additional SVE systems (SVE2 and SVE3) consisting of three nested deep SVE wells and three shallow SVE wells on the west side of the property. GE also converted three deep soil vapor probes into nested SVE wells and connected them to the system. On April 8, 2021, following the installation of the new SVE wells, GE submitted the *Implementation of the Phase I Expansion of the Interim Measures* summarizing the work performed.²¹ On January 16, 2024 GE submitted a *Work Plan For Interim Measures – Phase II Soil Vapor Extraction Expansion* (Phase II SVE Workplan).²² The Workplan included recommendations for lateral and vertical vadose zone investigation and the conceptual design for expansion of the shallow and deep SVE well network, including 15 shallow SVE wells, 5 deep nested SVE wells, and 3 deep nested soil vapor monitoring wells to extend the influence of the SVE.

¹⁵ B. Kueper & Associates, Ltd. (2024). *Groundwater Flow Model Report. GE Flatiron and Test Cell Sites Ontario California*. Prepared for General Electric Company. March 12, 2024.

¹⁶ WSP USA Environment and Infrastructure Inc. (2024). *Revised Basis of Design for Well EW-03. Former General Electric Company Flatiron Facility*. Prepared for General Electric Company. April 30, 2024.

¹⁷ WSP USA Environment & Infrastructure Inc. (2023) Letter to the Santa Ana Regional Water Quality Control Board, on behalf of General Electric, Subject: Plan to Construct Injection Well IW-04 at the Existing Bon View Park Injection Well Field. November 21, 2023.

¹⁸ Geomatrix. (2002). Draft Remedial Action Plan. August 2002.

¹⁹ Geomatrix. (2003). SVE Implementation Report. July 2003.

²⁰ Arcadis U.S., Inc. (2007). *Soil Vapor Extraction System Modification Workplan, General Electric (GE) Flatiron Facility,* 234 E. Main Street, Ontario, CA. Letter to General Electric Company. August 21, 2007.

²¹ Wood Environment & Infrastructure Solutions, Inc. (2021). *Implementation of the Phase I Expansion of the Interim Measures, General Electric Company Flatiron Facility, 234 East Main Street and Vicinity, Ontario, California*. Prepared for General Electric Company. April 8, 2021.

²² WSP USA Environment and Infrastructure Inc. (2024). *Work Plan For Interim Measures – Phase II Soil Vapor Extraction Expansion*. Prepared for General Electric Company. January 16, 2024.

Monitoring and Reporting

The monitoring and reporting program for the GE Flatiron site includes both plume and remediation system monitoring and reporting. The objectives of the respective programs are to monitor groundwater elevations and contaminate concentrations in the plume over time and to track and evaluate the performance of the remediation system.

Plume monitoring includes quarterly measurements of groundwater levels and collection of groundwater-quality samples for chemical analyses. Depth to groundwater is measured at 36 wells and three piezometers each quarter. Groundwater-quality samples are also collected at these locations, although the number of wells sampled each quarter varies based on the specific quarter's monitoring plan. Water-quality samples are analyzed for dissolved metals, VOCs, and general minerals. Results are summarized in semiannual reports published in January and July.

Remediation system monitoring includes the monitoring of operations at both the groundwater and SVE treatment systems. For the groundwater treatment system, at a minimum, monthly sampling and analysis of the influent to the treatment plant from EW-01 and EW-02 and treated effluent is performed pursuant to WDR Order No. R8-2011-0019. The results from the treatment system monitoring are included in the semiannual groundwater monitoring reports. Additionally, monthly operational compliance reports on the groundwater treatment system are submitted to the Santa Ana Water Board. Monitoring of the SVE treatment system occurs weekly and monthly, with quarterly reporting in compliance with the Sampling and Monitoring Plan.²³ Additionally, indoor air sampling is conducted on a semiannual basis. Over time, monitoring has demonstrated that vapor mitigation measures are effective at controlling vapor intrusion.

All semiannual and monthly reports, and other relevant documents/data, can be found on the State Water Resources Control Board GeoTracker website.²⁴

RECENT ACTIVITY

The most recent groundwater monitoring report prepared by GE is the *First Half 2025 Groundwater Monitoring and Remediation Report*.²⁵ This report summarizes groundwater monitoring at 36 wells and three piezometers, as well as the remediation activities performed between January 1 and June 30, 2025. First-quarter groundwater elevation measurements and groundwater samples were collected in January and February 2025, and second-quarter groundwater elevation measurements and groundwater samples were collected in April and May 2025. The following summarizes the key findings presented in the report:

- Groundwater flow trended generally towards the south-southwest. Groundwater elevations generally increased from the second half of 2024 through the first half of 2025.
- Concentrations of all four contaminants of concern remain stable and consistent with historical values.
- MW-22A had the highest concentrations of TCE and PCE (18,000 and 1,300 µgl, respectively).
- MW-23A had the highest concentration of chromium and hexavalent chromium (2,430 and 2,600 μgl, respectively).

²³ Geomatrix. (2002). Sampling and Monitoring Plan. Prepared for General Electric Company. 2002.

²⁴ https://geotracker.waterboards.ca.gov/profile_report?global_id=SL0607132486

²⁵ WSP USA Environment and Infrastructure Inc. (2025). *First Half 2025 Groundwater Monitoring and Remediation Report*. Prepared for General Electric Company. July 25, 2025.

Chino Basin Watermaster October 2025

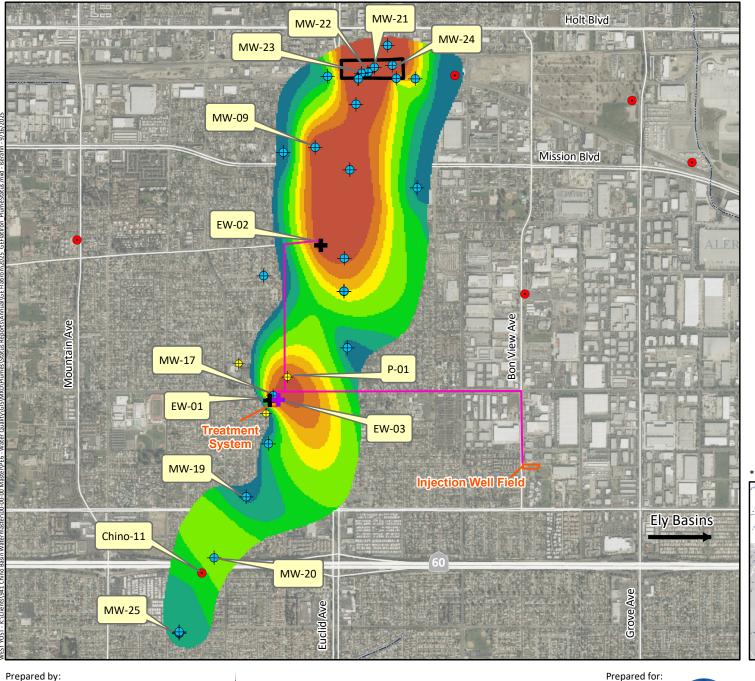
- Overall, the highest concentrations of TCE, PCE, total chromium, and hexavalent chromium continue to be detected at onsite wells at the north end of the plume (MW-21 through MW-23).
- Approximately 285 acre-feet of groundwater from EW-01 and 184 acre-feet of groundwater from EW-02 were treated and discharged to the Bon View injection well field, removing approximately:
 - 61 pounds of TCE and 24 pounds of total chromium from EW-01
 - 620 pounds of TCE and 73 pounds of total chromium from EW-02

During the reporting period, monthly Facility Treatment System Summaries were posted to GeoTracker providing information on the groundwater treatment system status, including well operation, compliance sampling, and system operation including any period of shutdowns. Since operations initiated at EW-01 (1996) and EW-02 (2002) through September 2025, EW-01 has treated 17,502 acre-feet, and EW-02 has treated 6,742 acre-feet.

GE will continue remediation and monitoring at the Flatiron Facility with the next groundwater monitoring activities scheduled for October 2025.

In September 2024, GE completed the construction of the 15 new shallow SVE wells, pursuant to the Phase II SVE Workplan, to expand the SVE system. In February 2025, GE submitted a report to the Santa Ana Water Board summarizing the drilling, sampling, and installation work to install these SVE wells. ²⁶ The eight deep-nested SVE wells planned for construction as part of this expansion, were unable to be constructed due to access issues for the equipment to drill the deep nested SVE wells. In May 2025, GE prepared an addendum to the Phase II SVE Workplan to describe the modifications to the Phase II SVE expansion for the deep nested SVE wells. ²⁷ The plan in the Addendum is to drill four of the eight deep-nested wells but at shallow depths using different equipment with no access issues. The Santa Ana Water Board approved the Addendum in August 2025, requiring that field work preparation must begin no later than September 8, 2025 and that a report of findings must be submitted no later than 60 days after the completion of field work. ²⁸

On August 27, 2025, the Santa Ana Water Board provided comments on GE's April 2024 report detailing the results of per- and poly-fluoroalkyl substances (PFAS) monitoring at the former Flatiron facility.²⁹ The Santa Ana Water Board disagreed with GE's conclusion that PFAS had not been released to groundwater from the site, citing the site's long industrial history, PFAS's tendency to persist in and absorb to soil, absence of soil sampling at potential source areas, and the presence of a 350-foot-thick vadose zone. They emphasized that groundwater data alone are insufficient to rule out PFAS contamination and requested a soil investigation work plan by December 1, 2025.


WEST YOST

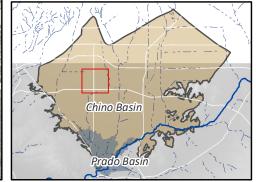
²⁶ WSP USA Environment and Infrastructure Inc. (2025). *Shallow Soil Vapor Extraction Well Installation Report* – *Phase II Soil Vapor Extraction Expansion. Former General Electric Company Flatiron Facility.* February 19, 2025.

²⁷ WSP USA Environment and Infrastructure Inc. (2025). Letter to Santa Ana Regional Water Quality Control Board, Subject: *Work Plan for Interim Measures – Phase II Soil Vapor Extraction Expansion, Addendum 1.* May 30, 2025.

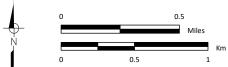
²⁸ Santa Ana Water Board. Email Communication with GE. Subject: GE Flatiron: Comments on Work Plan for Interim Measures – Phase II Soil Vapor Expansion, Addendum 1. August 25, 2025.

²⁹ WSP USA Environment and Infrastructure Inc. (2024). Sampling and Analysis Report to Evaluation the Presence of Selected Per- and Poly-Fluoroalkyl Substances (PFAS) for the former General Electric Flatiron facility, located at 234 Main Street in Ontario. April 29, 2024.

Maximum Concentration (µgL) July 2019 - June 2024


TCE $> 0.5 \text{ to } \le 5$ > 50 to ≤ 100 > 5 to ≤ 10 $> 100 \text{ to} \le 200$ > 10 to ≤ 20 > 200 to ≤ 500 $> 20 \text{ to } \le 50$ > 500

 $MCL = 5 \mu gl$


(Delineated by Watermaster in the 2024 State of the Basin Report)

- **GE Extraction Well**
- **Proposed Location of New Extraction Well**
 - **GE Monitoring Well** (some locations have multiple wells at various depths)*
- **GE Piezometer**
- Active/Inactive Potable Municipal Water Supply Well
- Conveyance Pipeline
- Former GE Flatiron Property Boundary

* Wells are labeled by well name if mentioned in the report

Chino Basin Watermaster Annual Plume Report

General Electric (GE) Flatiron TCE Plume

Annual Plume Status Report

General Electric Test Cell Plume October 2025

CONTAMINANTS

The primary contaminant is trichloroethene (TCE). Other contaminants of concern include the following volatile organic compounds (VOCs): tetrachloroethene (PCE), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), and cis-1,2-dichloroethene (cis-1,2-DCE). For each of these contaminants, the table below lists the California maximum contaminant level (MCL) and maximum concentration detected in groundwater samples from wells within the plume over the last five years.

Table 1. Maximum Concentration of Contaminants of Concern between July 2020 and June 2025

Contaminant	MCL, micrograms per liter (μgl)	Max Concentration, μgl	Sample Date	Well
TCE	5	6,500 ^(a)	January 2025	AW-01
PCE	5	59	July 2024	MW-13-d
1,1-DCE	6	92	January 2025	AW-01
1,2-DCA	0.5	2.9	January 2025	MW-10-sR
cis-1,2-DCE	6	28	January 2021	OW-18-d

Notes:

(a) This is the maximum TCE concentration ever measured at a monitoring well in the GE Test Cell plume.

LOCATION

The General Electric (GE) Test Cell plume is located in the central Chino Basin within the City of Ontario, south of the Ontario International Airport. It extends southwest from the former GE Engine Services Test Cell Facility (Test Cell Facility) located at 2264 East Avion Place. The plume is elongated, extending approximately 1.9 miles downgradient from the facility, and is about 0.6 miles wide.

The most recent delineation of the plume's extent was done by Chino Basin Watermaster (Watermaster) for the 2024 State of the Basin Report.¹ This characterization is based on the five-year maximum TCE concentration measured from July 2019 through June 2024. Exhibit 1 shows the location and extent of the plume as delineated by Watermaster in 2025, compared to the most recent characterization by GE in its 2025 Second Quarter Groundwater Monitoring Report.²

¹ West Yost Associates. (2025). *Chino Basin Optimum Basin Management Program, 2024 State of the Basin Report.* Prepared for Chino Basin Watermaster. September 2025.

² WSP USA Environment and Infrastructure Inc. (2025). *Second Quarter 2025 Groundwater Monitoring Report Former General Electric Engine Services Test Cell Facility.* Prepared for General Electric Company. July 24, 2025.

SITE HISTORY

From 1956 to 2010, the Test Cell Facility was used to test and maintain commercial and military jet engines. Chlorinated solvents used at the facility for cleaning and degreasing, including TCE, were stored in 55-gallon drums and aboveground storage tanks. In the early 1970s, TCE was replaced with 1,1,1-TCA, which was subsequently replaced in 1981 with isopropyl alcohol—the only solvent used onsite through 1996.

Until 1974, wastewater containing residual solvents, along with fuel and oil residues, was diverted to below-ground separators for recycling. Excess wastewater from the separators occasionally flowed into a natural wash along the north side of the property, which drained into the Cucamonga Creek. From 1974 to 1980, two dry wells were connected to the separators, extending approximately 270 feet below ground surface (ft-bgs). From 1980 to 2006, wastewater continued to be captured by the separators and was either recycled or treated offsite. Beginning in 2006, wastewater was stored in aboveground storage tanks and transported offsite for treatment and disposal. The Test Cell Facility ceased operations in 2011 and the site is currently vacant.

REGULATORY ORDERS

State of California Department of Health Services (CDHS) Docket No. 88/89-009CO. Consent
Order Health and Safety Code Section 25355.5(a)(1)(B) and 25355.5 (a)(1)(C). In the Matter
of: General Electric Engine Maintenance Center. September 1988. This Order required GE to
conduct a remedial investigation and feasibility study to evaluate and monitor soil, surface
water, and groundwater contamination at the site and to prepare a remedial action plan.

REGULATORY AND MONITORING HISTORY

In 1984, an investigation performed by C.H.J, Inc. soil engineers detected TCE, PCE, 1,1,1-TCA, and dibromochloromethane in soil samples near the dry wells; however, the results from this investigation were deemed invalid due to the use of inappropriate analytical methods.³ In 1985, another consulting firm retained by GE detected TCE, PCE and 1,1,1-TCA in subsurface soil samples collected onsite.⁴ A subsequent investigation in 1987 revealed the presence of multiple VOCs in soil near the disposal sites.⁵

In 1988, a Consent Order was signed between GE and the CDHS (now the Department of Toxic Substances and Control [DTSC]) to initiate an investigation of soil, surface water, and groundwater contamination, and identify appropriate remedial actions. In 1990, GE performed a Phase I remedial soil investigation to assess the impacts of VOCs and jet fuel in the soil near the dry wells and Cucamonga Creek. During the investigation, VOCs were detected in soil samples collected onsite and in excavated soil from the dry wells.

³ The investigation is described in State of California Department of Health Services. (1998). Docket No. 88/89-009CO. Consent Order Health and Safety Code Section 25355.5(a)(1)(B) mad 25355.5 (a)(1)(C). In the Matter of General Electric Engine Maintenance Center. September 1988.

⁴ Ibid.

⁵ Dames & Moore. (1987). *Subsurface Investigation, Ontario California, for General Electric Aviation Services Operations.* Prepared for GE Engine Services Test Cell Facility. February 4, 1987.

⁶ Dames & Moore. (1990). *Phase I Remedial Investigation, Engine Maintenance Center Test Cell Facility, Ontario, California*. Prepared for General Electric Company. 1990.

Phase II of the remedial investigation focused on assessing groundwater conditions beneath the site, including evaluating the nature, extent, and migration characteristics of dissolved VOCs in groundwater.^{7,8} In 1991, as part of the Phase II investigation, GE installed seven monitoring wells onsite and upgradient of the site. Monitoring performed at these wells indicated the presence of VOCs in groundwater beneath the Test Cell Facility with potential for offsite migration.

Pursuant to the DTSC 1988 Consent Order, a feasibility study and a remedial investigation were completed in 1993, followed by the preparation of a remedial action plan in 1994. 9,10,11 The remedial action identified was an in-situ soil vapor extraction treatment system (VETS) to reduce VOC concentrations to levels that would not impact groundwater. The VETS began operating in 1996.

In 1994, the Santa Ana Regional Water Quality Control Board (Santa Ana Water Board) was designated as the lead agency to oversee the groundwater investigation, while the DTSC retained oversight of the soil investigation and operation of the VETS. The Santa Ana Water Board requested that GE perform an offsite investigation to determine the extent of groundwater contamination. An extensive offsite investigation was completed in multiple phases from 1995 to the early 2000s. The initial phase, completed in 1995 included the installation of four offsite monitoring wells. Subsequent phases of the offsite investigation were conducted from 1996 to the early 2000s and resulted in the construction of 22 additional offsite monitoring wells within multi-depth well clusters. Monitoring at these wells indicated that the VOC plume composed of TCE, cis-1,2-DCE, and 1,1-DCE (byproducts of TCE degradation) had migrated offsite and that TCE concentrations were highest in the intermediate and deep aquifer zones. In 2003, GE submitted a groundwater feasibility study to the Santa Ana Water Board (2003 Feasibility Study), followed by a draft remedial action plan (RAP) in 2006. The intermedial alternatives.

In 2005 and 2008, GE submitted five-year review reports to the DTSC in compliance with the 1988 Consent Order, evaluating the performance of the soil VETS. 14,15 Following the 2008 report, GE requested site closure and cessation of VETS operations. The DTSC granted final closure and completion of the soil remediation in 2009, contingent upon the implementation of institutional controls limiting the site to commercial/industrial use. Following the closure of the soil VETS, GE continued conducting quarterly groundwater monitoring at their network of onsite and offsite monitoring wells and constructed additional multi-depth wells at six locations.

_

⁷ Dames & Moore. (1990). *Phase II A Remedial Investigation Work Plan, Engine Maintenance Center Test Cell Facility, Ontario, California*. Prepared for General Electric Company. 1990.

⁸ Dames & Moore. (1991). *Phase II B Remedial Investigation, Engine Maintenance Center Test Cell Facility, Ontario, California*. Prepared for General Electric Company. 1991.

⁹ Dames & Moore. (1993). Feasibility Study Report, General Electric Jet Engine Test Cell Facility, Jet Engine Test Cell Facility, 2264 Avion Place, Ontario, California. 1993.

¹⁰ Dames & Moore (1993). Remedial Investigation Report, Jet Engine Test Cell Facility, 2264 Avion Place, Ontario California. 1993

¹¹ Dames & Moore. (1994). Remedial Action Plan for Impacted Soil, General Electric Jet Engine Test Cell Facility, 2264 Avion Place, Ontario, California. September 16, 1994.

¹² Geosyntec. (2003). *Groundwater Feasibility Study – GE Engines Test Cell Facility, Ontario, California*. Prepared for GE Engine Services. December 3, 2003.

¹³ Geosyntec. (2006). *Draft Groundwater Remedial Action Plan, GE Engine Services Test Cell Facility, 2264 Avion Place, Ontario, California*. Prepared for GE Engine Services Test Cell Facility. November 17, 2006.

¹⁴ Geosyntec. (2005). *First Five-Year Review Report Shallow Soil Remedy*. Prepared for GE Engine Services Test Cell Facility, City of Ontario, San Bernardino County, California. July 15, 2005.

¹⁵ Geosyntec. (2008). Second Five-Year Review Report, GE Engine Services Test Cell Facility, 2264 Avion Place Ontario, California. Prepared for GE Engine Services. October 27, 2008.

In May 2019, the DTSC transferred regulatory oversight of all environmental activities at the Test Cell Facility to the Santa Ana Water Board, including the soil investigation. This transfer was made for the following reasons: (1) the Santa Ana Water Board was already the lead agency overseeing the groundwater investigations related to the site; (2) recent increases in VOC concentrations in some groundwater monitoring wells could have warranted further evaluation; and (3) the transfer would minimize any overlap of the investigation or cleanup activities between the two agencies. In 2019, the Santa Ana Water Board concluded that the impacts to groundwater and soil had not been adequately addressed and indicated that monitored natural attenuation may not be sufficient as the sole groundwater remedial action. The Santa Ana Water Board requested that GE prepare a Conceptual Site Model (CSM) to help determine the appropriate remedial action. GE submitted the CSM to the Santa Ana Water Board in November 2019. Overall, the CSM concluded that natural attenuation is occurring and has maintained a stable groundwater plume. This was supported by declining TCE concentrations near the source, consistently low levels at the downgradient well, and plume behavior consistent with displacement from increased recharge at the Ely Basins rather than new releases.

From 2021 to 2023, GE conducted multiple investigations to assess whether the historical VETS operation had sufficiently removed VOCs from the soil vapor and there had been no rebound. This work included multiple rounds of soil vapor and groundwater sampling and the installation new vapor probes and deep groundwater monitoring wells at seven onsite locations (MW-10D to MW-16D). Results and analyses were reported to the Santa Ana Water Board, including the *On-Site Soil Vapor and Groundwater Investigation Report*. ^{18,19} GE concluded that the historical soil remediation activities were successful in mitigating TCE concentrations in soil beneath the site and that no further investigation of the soil was warranted.

In December 2022, GE submitted a groundwater sampling plan to further investigate increasing TCE concentrations in the northern part of the plume and to identify potential contributing sources.²⁰ To guide the investigation, GE used steady state groundwater flow model of the GE Flatiron and GE Test Cell area to perform backward particle tracking, which pointed to an adjacent area on the Ontario Internation Airport (OIA) property just to the northwest of the GE Test Cell site.²¹ Between July and November 2023, GE completed a borehole investigation and installed two new monitoring wells—AW-01 and AW-02—on the OIA property, as shown in Exhibit 1. Groundwater sampling at these wells revealed elevated TCE concentrations, at historically high levels in these upgradient wells. This more recent investigation is further described in the Recent Activity Section of this report.

¹⁶ Email correspondence with Mr. Alan Kouch at the Santa Ana Water Board on September 19, 2019.

¹⁷ Wood Environmental & Infrastructure Solutions, Inc. (2019). *Conceptual Site Model Former General Electric Engine Services Test Cell Facility*. Prepared for General Electric Company. November 5, 2019.

¹⁸ Wood Environmental & Infrastructure Solutions, Inc. (2022). *Data Transmittal for On-Site Soil Vapor Well Sampling*. Letter sent on behalf of GE Engine Services Test Cell Facility to the Santa Ana Water Board. January 24, 2022.

¹⁹ WSP USA Environment & Infrastructure Inc. (2024). *On-Site Soil Vapor and Groundwater Investigation Report, Former General Electric Engine Services Test Cell Facility, 2264 East Avion Place, Ontario, California*. January 24, 2024. ²⁰ WSP. (2022). *Plan for Groundwater Sampling Upgradient from Well OW-6*. Prepared for General Electric Company. December 12, 2022.

²¹ B. Kueper & Associates, Ltd. (2024). *Groundwater Flow Model Report. GE Flatiron and Test Cell Sites Ontario California*. Prepared for General Electric Company. March 12, 2024.

REMEDIAL ACTION

Groundwater

The 2003 Feasibility Study and 2006 draft RAP identified two groundwater remediation alternatives:

- 1. Extraction and treatment of groundwater in areas where VOC concentrations are approximately ten times the MCL (>50 µgl).
- 2. Monitored natural attenuation of groundwater in areas where VOC concentrations are less than ten times the MCL.

Following the submittal of the draft RAP, GE determined that the plume extending downgradient from the facility with TCE concentrations above 50 µgl had decreased in size from approximately 4,000 feet to about 2,600 feet. Fate and transport modeling indicated that either monitored natural attenuation or a pump-and-treat alternative would reduce the TCE concentrations in the plume to levels at or below the MCL within the same time frame of 50 years. In 2008, GE met with the Santa Ana Water Board to discuss the status of the plume and to reevaluate the RAP to consider monitored natural attenuation as the primary remedial action. Based on this discussion, GE agreed to install additional monitoring well clusters between the former GE facility and well cluster OW-16, located near the center of the plume.²² OW-16 was selected because, at the time, it had the highest historical offsite TCE concentrations in the intermediate and deep intervals of the aquifer. Pursuant to this agreement, two offsite well clusters (OW- 17 and OW-18) and one onsite well cluster (MW-8) were installed in August and September 2009 and in February 2010 the 2006 draft RAP was formally withdrawn. Following the withdrawal of the 2006 draft RAP, GE and the Santa Ana Water Board continued to meet to evaluate whether monitored natural attenuation remained an appropriate remedial action for the Test Cell Facility.

In March 2023, the Santa Ana Water Board approved a new Plume Migration Control work plan for the feasibility, design, and installation of a plume migration control system in the relatively higher concentration core of the plume. ²³ In April 2023, however, GE and the Santa Ana Water Board determined that the plume needed to be carefully defined through assessing upgradient contributions before selecting a site for groundwater extraction and treatment. ²⁴ As of October 2025, no further formal action has been taken by GE or the Santa Ana Water Board towards implementation of a plume migration control system, and the most recent investigation on potential upgradient concentrations is described in the Recent Activity Section of this report.

Soil

In 1996, pursuant to the 1988 Consent Order, GE began operating the VETS to remove VOCs from the onsite soil and to prevent these contaminants from entering the groundwater. The treatment system operated from 1996 to 2005, with verification monitoring conducted from 2004 to 2007. During this time, GE was required to submit a review and reevaluation of the remedial actions every five years. The Second Five-Year Review Report was submitted to the DTSC in October 2008 and concluded that the soil

²² Geosyntec. (2009). *Monitoring Well Installation Work Plan, GE Engines Services Test Cell Facility*. Prepared for GE Engine Services Test Cell Facility. July 2, 2009.

²³ Wood. (2022). Work Plans for Off-Site Groundwater Investigations and Plume Migration Control Near the Former General Electric Engine Services Test Cell Facility, Ontario, California. April 14, 2022.

²⁴ April 18, 2023 email transmittal of call between GE, WSP and the Santa Ana Water Board.

remediation program had significantly reduced VOC concentrations in soil to levels that were no longer harmful to human health or groundwater quality.²⁵ It also indicated that there was no significant VOC rebound after treatment ceased in 2005. The report recommended that soil remediation be deemed complete and that the DTSC grant final closure. The DTSC granted final closure in 2009 with the condition that institutional controls to limit the site to commercial/industrial use were implemented.

MONITORING AND REPORTING PROGRAM

The objectives of the monitoring program are to evaluate the extent and magnitude of the plume emanating from the Test Cell Facility and to support the ongoing evaluation of monitored natural attenuation as a remedial action. Groundwater monitoring is conducted quarterly and includes measuring groundwater levels and collecting groundwater samples at up to 50 onsite and offsite monitoring wells, as well as measuring groundwater levels at four piezometers located adjacent to the Ely Basins. Exhibit 1 shows the locations of all monitoring sites. Quarterly groundwater quality samples are analyzed for VOCs and reports summarizing the results and conclusions are published each quarter. These reports, along with all data collected by GE since 2005 are posted on the State Water Resources Control Board GeoTracker website.²⁶

Annual soil sampling and monitoring ceased following the approval of the VETS closure request in 2009. Since then, soil-vapor has been sampled twice, once in 2014 and again in 2021, at the request of the Santa Ana Water Board.

RECENT ACTIVITY

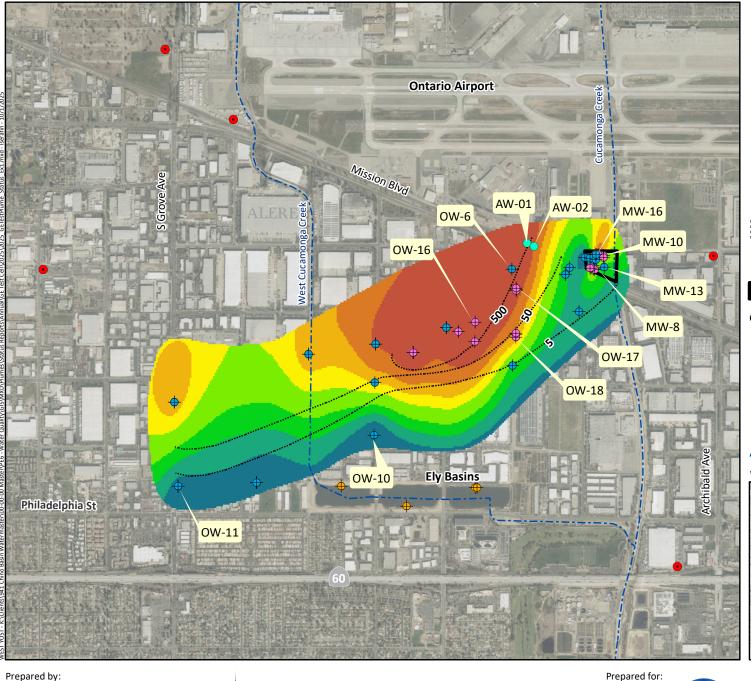
The most recently submitted monitoring report for the GE Test Cell Facility is the *Second Quarter 2025 Groundwater Monitoring Report*.²⁷ Groundwater quality samples and groundwater-level measurements were collected at 47 GE monitoring wells, and groundwater-level measurements were collected at four Ely Basin piezometers owned by San Bernadino County. The monitoring event was conducted in April 2025. The following summarizes key results and conclusions from the report:

- Groundwater sampling indicated the presence of detectable concentrations of 17 VOCs, with TCE having the highest concentrations in most wells.
- TCE concentrations exceeded the MCL in 35 of the 47 wells sampled, while three wells showed non-detect levels of TCE. Five wells reported the highest TCE concentrations recorded to date.
- The highest TCE concentration in groundwater was 5,600 µgl at the new offsite monitoring well AW-01 located on OIA property. This result suggests that elevated concentrations of TCE are migrating from a source or sources on OIA property in a southwest to south-southwest direction. TCE concentrations in offsite monitoring wells downgradient from AW-01 were also higher than historical results. These elevated concentrations cannot be attributed to historical TCE concentrations in groundwater beneath the former GE Test Cell Facility.

²⁵ Geosyntec. (2008). *Second Five-Year Review Report, Ge Engine Services Test Cell Facility*. Prepared for GE Engine Services Test Cell Facility. October 27, 2008.

²⁶ https://geotracker.waterboards.ca.gov/profile_report?global_id=SL208133868

²⁷ WSP USA Environment and Infrastructure Inc. (2025). *Second Quarter 2025 Groundwater Monitoring Report Former General Electric Engine Services Test Cell Facility*. Prepared for General Electric Company. July 24, 2025.

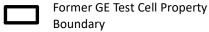

- Overall, detected TCE concentrations at wells onsite and adjacent to the former GE Test Cell Facility remain relatively low, with a maximum TCE concentration of 40 μgl at well MW-10-sR.
- The most downgradient monitoring well (OW-11) has had TCE concentrations below the MCL since groundwater monitoring began.
- Groundwater elevations are generally within historical ranges but have been rising beneath
 the site and surrounding area since October 2022. Additionally, higher elevations were
 observed closer to the Ely Basins, indicating recharge at the Ely Basins. The general
 groundwater flow direction continues to be predominantly southwest.

The most recent report prepared on investigations of potential sources of elevated TCE concentrations upgradient of the plume is the *Summary Report: Investigation Upgradient of Well OW-6* submitted to the Santa Ana Water Board on March 29, 2024.²⁸ The work included discrete-depth groundwater sampling within the upper 50 feet of the saturated zone and monitoring well installation and groundwater sampling of two new OIA monitoring wells— AW-01 and AW-02. The report concludes that increased TCE concentrations at well OW-6 and other nearby wells within the plume are from source/s at the OIA property to the north-northeast. This conclusion was based on the multiple lines of evidence, including:

- Documented historical use of solvents at OIA.
- Model groundwater-flow directions and particle tracking indicate historical flow from this OIA area, coupled with increasing VOC concentrations at OW-6.
- TCE concentration of 5,200 µgl at new monitoring well AW-01 on the OIA property, which is twice as high as downgradient monitoring well TCE concentrations.
- Presence of carbon tetrachloride at the new OIA monitoring wells (AW-01 and AW-02), and OW-6 and other nearby wells, contrasting with not detect results from the other Test Cell facility monitoring wells.

Furthermore, TCE concentrations on and in the vicinity of the GE Test Cell facility property have remained relatively low since the completion of the SVE system (VETS) in 2010 and TCE concentrations in the offsite plume have been shown to be naturally attenuating. The report concludes that the OIA source of TCE is distinct from the GE Test Cell facility and distinct to the attenuating TCE concentrations in groundwater. This conclusion is further backed by the results from the 2024 *On-Site Soil Vapor and Groundwater Investigation Report* described in the Regulatory and Monitoring History Section of this report that concluded SVE activities were successful in mitigating TCE concentrations in soil beneath the site. Thus, the report concluded that no further onsite source investigation is warranted or recommended for the onsite soil vapor to groundwater pathway or for the onsite groundwater to offsite groundwater pathway, other than the continued monitoring of groundwater conditions at existing monitoring wells.

²⁸ WSP. (2024). *Summary Report: Investigation Upgradient of Well OW-6, Ontario, California.* Prepared for General Electric Company. March 29, 2024.

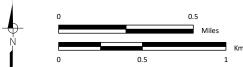


Maximum Concentration (µgL) July 2019 - June 2024

> TCE $0.5 \text{ to } \leq 5$ > 5 to ≤ 10 > 10 to ≤ 20 > 20 to ≤ 50 > 50 to ≤ 100 > 100 to ≤ 200 > 200 to ≤ 500 > 500 $MCL = 5 \mu ql$

(Delineated by Watermaster in the 2024 State of the Basin Report)

Contours of TCE Concentration (μgl) in the shallow zone delineated by WSP Consultants in the 2025 Quarter 2 Groundwater Monitoring Report


General Electric Active Monitoring Wells*


- Single Casing
- Multi-Depth Cluster
- Piezometers
- New Monitoring Well Drilled in 2024
- Active/Inactive Potable Municipal Water Supply Wells
- Streams & Flood Control Channels

* Wells are labeled by well name if mentioned in the report

General Electric (GE) Test Cell TCE Plume

Annual Plume Status Report

Former Kaiser Steel Mill Plume and CCG Ontario Monitoring and Remediation October 2025

CONTAMINANTS

From 1983 to 1993, the primary contaminants of concern (COCs) for the Former Kaiser Steel Mill site were total dissolved solids (TDS) and total organic carbon (TOC). In 2008, additional investigations commenced to identify other COCs. Currently, the COCs associated with the site include hexavalent chromium, carbon tetrachloride, and chloroform. Table 1 below shows the maximum concentrations of these COCs detected in groundwater samples collected from the Former Kaiser Steel Mill site from July 2020 through June 2025 compared to the maximum contaminant levels (MCLs).

Table 1. Maximum Concentration of Contaminants of Concern between July 2020 and June 2025					
Contaminant	MCL, μgl	Max Concentration, μgl	Sample Date	Well	
Hexavalent Chromium	10	289	February 2024	MW-14S	
Carbon Tetrachloride	0.5	3.03	February 2024	MW-25	
Chloroform	80	16.6	February 2023	SW-3	
Notes: µgl = micrograms per liter					

TDS and TOC are no longer considered COCs associated with Former Kaiser Steel Mill site.

LOCATION

The Former Kaiser Steel Mill site is a 1,200-acre parcel in an unincorporated area of the San Bernardino County between the Cities of Fontana and Ontario. The site is bounded by Whittram Avenue to the north, Interstate 10 to the south, and Etiwanda and Cherry Avenues to the west and east, respectively. Exhibit 1 shows the location of the Former Kaiser Steel Mill site.

SITE HISTORY

The Kaiser Steel Corporation operated the Kaiser Steel Mill from 1942 to 1983, and during peak production, the facility was the largest steel producer in the western United States. From 1942 through 1972, solid and liquid wastes produced from manufacturing processes were disposed of in waste pits and unlined surface impoundments for percolation and evaporation throughout the site. In the early 1970s, the surface impoundments were lined to eliminate percolation to groundwater. In 1987, the Kaiser Steel Corporation filed for bankruptcy and reorganized into Kaiser Resources, Inc., which became Kaiser Ventures, Inc. in 1995.

After the Kaiser Steel Corporation ceased steel operations in 1983, portions of the property were divided and leased or sold to the following organizations:

- Chemwest Industrial, Inc., a chemical manufacturing company, leased land in the southwest portion of the property (East Slag Pile Area in Exhibit 1) but no longer operates onsite.
- California Steel Industries (CSI) purchased and continues to operate 458 acres to manufacture rolled steel.
- The Auto Club Speedway (formerly California Speedway) was constructed by the Penske Corporation on 500 acres in the northern corner of the site in 1995.
- CCG Ontario, LLC (CCG)¹ purchased 592 acres along the western and southern portions of the property in 2000 and inherited responsibility for site contamination, remediation, and monitoring from Kaiser Ventures, Inc. (see Exhibit 1 for the property location).

REGULATORY ORDERS

There have been several regulatory orders issued to various tenants of the Former Kaiser Steel Mill site for the investigation and remediation of soil and groundwater contamination:

- Regional Water Quality Control Board Santa Ana Region (Santa Ana Water Board) Cleanup and Abatement Order (CAO) No. 87-121 (August 1987)—Required Kaiser Steel Corporation to initiate a Phase IV groundwater investigation and implement a remediation action alternative for groundwater contamination.
- California Department of Health Services (now Department of Toxic Substances Control (DTSC)) Consent Order with the Kaiser Steel Corporation (August 1988)—Required the Kaiser Steel Corporation to investigate any release of contamination to air, soil, surface water, and groundwater, and to ensure appropriate remedial measures were taken.
- Santa Ana Water Board CAO No. 91-40 (March 1991)—Required Kaiser Resources, Inc. perform a feasibility study for a salt-offset remediation alternative for groundwater contamination.
- California Department of Health Services (now DTSC) Consent Order with CSI (August 1995)—
 Required CSI to conduct a Site Investigation, perform health risk assessment at the CSI
 property, and develop and implement an action plan to remediate contaminations on site.
- DTSC Imminent and Substantial Endangerment Determination Consent Order with CCG (August 2000)—Transferred responsibility of investigation and remedial activities associated with the 592 acres purchased by CCG and the sale of the Coal Tar Pits Parcel from Kaiser Ventures, Inc. to CCG.

REGULATORY AND MONITORING HISTORY

In July 1983, a phased investigation of potential groundwater contamination, resulting from the disposal of high-salinity wastewater to unlined ponds during its early years of operation, was performed at the Former Kaiser Steel Mill site. The Phase I and II investigations were completed in December 1983 and identified 28 waste sites and four likely point-sources that contributed to TDS and TOC groundwater contamination beneath the facility.² Groundwater samples were collected at existing onsite and offsite wells to determine the preliminary extent of groundwater contamination and to assess groundwater quality downgradient from the site. The Phase III investigation, completed in March 1986, resulted in the construction of monitoring wells at six additional

¹ CCG Ontario is a subsidiary of Prologis, a real estate and supply chain logistics company.

² James M. Montgomery and Associates. (1983). Final Report, Kaiser Steel Corporation Groundwater Evaluations. December 1983.

locations (five single-nested and one quadruple-nested wells).³ Based on these investigations, three separate TDS plumes were identified: one located onsite, extending to a depth of 770 feet below ground surface (ft-bgs), and two that migrated offsite. Additionally, one TOC plume was identified onsite extending to a depth of approximately 100 ft-bgs. The Phase III investigation determined that the TDS plumes were moving downgradient at a rate of 100 to 300 feet per year with the potential to impact downgradient municipal production wells.

In response to the findings of the phased investigations, in 1987 the Santa Ana Water Board issued CAO No. 87-121 to the Kaiser Steel Corporation, which required a Phase IV groundwater investigation to further characterize the plume's extent and evaluate remediation strategies, such as groundwater extraction and treatment.⁴

On August 22, 1988, a Consent Order was signed between the Kaiser Steel Corporation and the California Department of Health Services, Toxic Substances Control Division (now known as the DTSC) to ensure that any release or threatened release of contamination to the air, soil, surface water, or groundwater at the site was thoroughly investigated, and that appropriate remedial actions were taken.⁵ Two preliminary assessments/site investigations were completed in August 1988 and January 1989. The results of these investigations were published in the Resource Conservation and Recovery Act (RCRA) Facility Assessment Report, which identified twenty areas for remedial investigation. The Phase I and II remedial investigations were completed in April and October of 1990, respectively. The results of these investigations concluded that three areas of the Former Kaiser Steel Mill site required remediation and further investigation: the tar pits, the byproducts plant area, and the east slag pile. The phase II remedial investigation also found that the cooling tower sludge bed required minor material removal. Due to the limited remediation required, it was recommended that the cooling tower sludge bed be included in the remedial action plan for the east slag pile. The Phase II remedial investigation also concluded that material from the furnace dust/mill scale piles would require removal. Ultimately this material was recycled into the cement industry and didn't require further remediation. For each of the three areas, individual feasibility studies and remedial action plans were prepared and remediation for all three areas occurred between 1995 and 1999.

In 1990, Kaiser Resources, Inc. (formerly Kaiser Steel Corporation) initiated plans for a 'salt-offset' as an alternative to groundwater extraction and treatment of the TDS and TOC plumes. In March 1991, the Santa Ana Water Board rescinded CAO No. 87-121 and issued CAO No. 91-40, which allowed Kaiser Resources, Inc. to complete a feasibility study for a salt-offset program. The *Phase IV Groundwater Remediation Feasibility Study Draft Report* was published in 1991; it analyzed a salt-offset alternative and nine other groundwater remediation alternatives. In 1993, CAO No. 91-40 was rescinded when Kaiser Resources, Inc. and the Santa Ana Water Board entered into a settlement agreement (known as the Salt Offset Agreement). Under the Salt Offset Agreement, Kaiser Resources, Inc. would contribute financial resources and dedicate its Chino Basin water rights to support the construction and operation of the Chino Basin Desalters in exchange for release from any future liability for TDS and TOC contamination. Kaiser Resources, Inc. made a one-time contribution of \$1.5 million and 25,000 acre-feet of its water rights established under the Chino Basin Judgement.

³ James M. Montgomery and Associates. (1986). *Kaiser Steel Corporation Phase III Groundwater Investigation*. Prepared for Kaiser Steel Corporation. March 1986.

⁴ Santa Ana Water Board. (1987). Cleanup and Abatement Order No. 87-121 for Kaiser Steel Corporation Fontana, San Bernardino County. August 26, 1987.

⁵ DTSC Docket No. HAS 87/88-032CO. Consent Order (Health and Safety code sections 205,25355.1(a)(1)) August 22, 1988.

⁶ JMM. (1989). RCRA Facility Assessment Report. Prepared for Kaiser Steel Resources, Inc. January 1989.

⁷ https://www.envirostor.dtsc.ca.gov/public/profile_report?global_id=60001356

⁸ Mark J. Wildermuth. (1991). *Phase IV Groundwater Remediation Feasibility Draft Report*. Prepared for Kaiser Steel Resources, Inc. November 1991.

Between 1986 and 1994, an interim groundwater-quality monitoring program was implemented to further characterize the extent of the TDS and TOC groundwater contamination. The monitoring program consisted of a sampling a network of 30 onsite and offsite monitoring and production wells, including newly constructed monitoring wells KOSF-1 and Kaiser-MP2. The maximum TDS and TOC concentrations detected in groundwater samples during this time were 1,600 milligrams per liter (mgl) and 70 mgl, respectively.

In 1995, the DTSC issued the Consent Order for CSI to develop and implement an Expedited Remedial Action Plan (ERAP) on its property that was purchased from the Former Kaiser Steel Mill Site. Pursuant to the ERAP, a site investigation was performed at 28 areas on the CSI property which identified 31 Areas of Concern (AOCs). In 2004 and 2013, carcinogen risk assessments of onsite soil indicated that 26 AOCs do not require further remediation other than restrictions that land use can only be industrial uses. The selected mitigation measures for the remaining AOCs included the installation of a surface soil cover system (cap) and maintaining an existing surface cap. Contaminant fate and transport analyses conducted as part of the site investigation indicated that there are no risks to the underlying groundwater at these areas. Annual cap inspections and five-year reviews are ongoing with supplemental characterization and remedial actions conducted intermittently.

In 2000, CCG purchased 592 acres of the Former Kaiser Steel Mill site and entered into a Consent Order with the DTSC, transferring responsibility for the remediation of site-related contamination from Kaiser Ventures, Inc. (formerly Kaiser Steel Corporation and Kaiser Resources Inc.) to CCG.¹¹ The 2000 Consent Order also required CCG to perform groundwater investigations and, if necessary, develop remediation alternatives for COCs other than TDS and TOC.

REMEDIAL ACTION

As previously noted, remediation activities associated with the TDS and TOC plumes ended with the adoption of the 1993 Salt Offset Agreement.

The 1988 Consent Order between the DTSC and Kaiser Ventures, Inc. required remediation and further investigation of several areas. Following initial investigations, remedial action plans were prepared for each of the primary areas identified for remediation. Between 1995 and 1999, waste was removed from several areas, caps were constructed, and further investigations into some areas found that those areas did not require additional remedial work.

In 1995 the Consent Order between the DTSC and CSI required remediation that included the installation of a surface soil cover system (cap) and maintenance an existing surface cap. No remedial action was required for groundwater.

The 2000 Consent Order between the DTSC and CCG, who had acquired a portion of the property from Kaiser Ventures, Inc. overrode the 1988 Consent Order and divided the site into four 'Operable Units' (OUs) (see Exhibit 1 for OU boundaries) and required remediation of each OU. The following describes the Remedial Action Plans (RAPs) for OU-1 through OU-4:

WEST YOST

⁹ DTSC No. HAS 95/96-068 Expedited Remedial Action Voluntary Enforceable Agreement (Health and Safety Code Section 25398.2b). August 8, 1995.

¹⁰ DTSC. (2015). Approval of the Final Remedial Design and Implementation Plan for Area of Concern (AOC) 9 and AOC 22, California Steel Industries, Inc., Fontana, California. September 15, 2015.

 $^{^{11}}$ DTSC Docket No. I&SE – CO 00/01-001. Imminent and Substantial Endangerment Determination and Consent Order (Health and Safety code sections 25355.5(a)(1)(B) and (C), 25358.3 (a), 58009 and 58010. August 10, 2000.

- OU-1 Tar Pits. The RAP included an in-situ solidification of the tar and surrounding soil and the construction of a cover system (cap) over the tar pits parcel.¹² The DTSC approved the final amended RAP in 2001.¹³
- OU-2 Auto Club Speedway/By-Products Area. The RAP included the removal and treatment of contaminated sludge waste, construction of a two-foot protective soil layer and a 13-acre cap over the protective soil layer, and groundwater monitoring. ¹⁴ The DTSC approved the final RAP on May 1, 1995. ¹⁵
- OU-3 East Slag Pile Landfill Area (ESPLA). The RAP included the construction of a four-foot thick monolithic soil cover, a landfill gas collection and control system, landfill gas monitoring probes, pavement on the upper surface of east slag pile, a surface water drainage system, groundwater monitoring, and long-term operations and maintenance of at least 30 years.¹⁶ The DTSC approved the final RAP on October 31, 2007.¹⁷
- OU-4 Chemwest Upper Ponds/Consolidated Waste Cell/Aboveground Storage
 Tanks/Chrome Ponds and Adjacent Areas (CCAC). The RAP included the construction of a
 cap over the CCAC, groundwater monitoring, and long-term operations and maintenance.
 The DTSC approved the final RAP on February 13, 2009. 18

The above remedial actions specified for OU-1 through OU-4 have been implemented. Site maintenance, inspection, and monitoring reports on the implemented remedial measures at the OUs are published quarterly, semi-annually, and annually to ensure the completed remedies are operating properly.

In 2008, an additional operable unit, OU-5 Sitewide Groundwater, was established to prescribe site-wide monitoring of groundwater in accordance with the 2000 Consent Order between the DTSC and CCG. The 2008 *Groundwater Remedial Investigation Work Plan* (2008 Work Plan) was prepared to address site-wide data gaps in characterizing groundwater contamination other than TDS and TOC and to develop a long-term, site-wide monitoring program.¹⁹ The 2008 Work Plan was approved by the DTSC on November 3, 2008 and resulted in the creation of the site-wide groundwater monitoring program which included construction of new monitoring wells at 24 locations and eight quarterly sampling events from 2009 to 2011. Data collected from the sampling efforts were used to perform a health risk assessment by comparing contaminant concentrations detected in the offsite groundwater monitoring wells with Environmental Protection Agency regional screening levels (RSLs). Hexavalent chromium, carbon tetrachloride, and chloroform were detected at concentrations above the risk-based screening concentrations and were therefore determined to be site-wide constituents of concern, warranting continued monitoring.

WEST YOST

¹² Arcadis Geraghty & Miller, Inc. (2001). Second Amendment to the Remedial Action Plan – Operable Unit No. 1 Tar Pits Parcel, Former Kaiser Steel Corporation, Fontana, California. Prepared for Kaiser Ventures. December 10, 2001.

¹³ DTSC. (2001). Letter from Thomas M. Cota – Final Second Amendment to the Remedial Action Plan for the Kaiser Steel Site, Operable Unit Number 1, Tar Pits Area. December 20, 2001.

¹⁴ Iris Environmental. (2014). *Third Five-Year Review Report Auto Club Speedway Operable Unit No. 2, By-Products Area Former Kaiser Steel Mill Facility San Bernardino County, California*. Prepared for CCG-Ontario LLC. June 2014

¹⁵ DTSC. (1995). Letter – Remedial Action Plan for Kaiser Resources, Inc. Operable Unit No. 2 is Approved. May 1, 1995.

¹⁶ Shaw Environmental, Inc. (2007). *Remedial Action Plan – East Slag Pile Landfill, Former Kaiser Steel Mill Site, Fontana, California*. Prepared for CCG Ontario, LLC. August 2007.

¹⁷ DTSC. (2007). Letter from Rebecca Chou – Approval of the Final Remedial Action Plan for the East Slag Pile Landfill (ESPL) Area, Former Kaiser Steel Mill, Fontana, California. October 31, 2007.

¹⁸ Shaw Environmental, Inc. (2009). Final Remedial Action Plan OU-4. Prepared for CCG Ontario LLC. January 2009.

¹⁹ Shaw Environmental, Inc. (2008). *Groundwater Remedial Investigation Work Plan; Former Kaiser Steel Mill*. Prepared for CCG Ontario LLC. October 2008.

On September 1, 2016, CCG completed the *Final Groundwater Remedial Investigation Report/Feasibility Study and Remedial Action Plan* (2016 Final RI/FS and RAP), which included the results of the 2009-2011 site-wide groundwater monitoring program and selected the RAP for OU-5 Sitewide Groundwater as monitored natural attenuation.²⁰ In September 2016, DTSC approved the RAP and requested CCG to submit a Remedial Design and Implementation Plan (RDIP) to implement the RAP for OU-5 Sitewide Groundwater.²¹ A draft RDIP (2016 RDIP) for OU-5, including a *Water Quality Sampling and Analysis Plan*, was submitted to the DTSC for review in November 2016.²² The DTSC provided multiple rounds of comments on the 2016 RDIP due to concerns about potential offsite migration of carbon tetrachloride. In a letter dated September 26, 2019, DTSC requested a Decision Tree for actions when downgradient monitoring points exceed half the MCL, sampling of specified wells, and updates to the conceptual site model. CCG submitted the draft Decision Tree on December 21, 2020, which was finalized and approved on December 10, 2021. Following this approval, a Revised RDIP was submitted on June 17, 2022. DTSC reviewed and provided comments, which CCG has recently addressed, as described in the Recent Activity Section below.

MONITORING AND REPORTING

Current groundwater monitoring activities are performed pursuant to the long-term²³ operations and maintenance plans for OU-2,²⁴ OU-3,²⁵ and OU-4.²⁶ Exhibit 1 shows the locations of the current monitoring well sites monitored for OU-2 through OU-4; some wells sites have multiple wells at various depths.

Table 2 below summarizes the number of monitoring wells, sampling frequency, and duration of sampling for each monitored OU.

Table 2. Summary of Operable Units, Monitoring Wells, and Monitoring Frequency				
Operable Unit No. of Wells ^(a) Sampling Frequency (Duration)				
OU-2	5	Quarterly (2009-2014); Semi-annual (2015-present)		
OU-3	9	Quarterly (2009-2014); Semi-annual (2015-present)		
OU-4	13	Quarterly (2009-present)		
Notes: (a) Some wells are sampled as part of more than one OU monitoring program.				

Per the 2000 Consent Order, CCG is required to prepare monitoring reports and five-year site-wide review reports that evaluate whether the remedial actions remain protective of human health and the environment. Groundwater monitoring reports for OU-2, OU-3, and OU-4 are prepared on a quarterly or

WEST YOST K-C-941-00-00-PEG-WP-xTM S KAISER PLUME

²⁰ Iris Environmental, Inc. (2016). *Final Groundwater Remedial Investigation Report/Feasibility Study and Remedial Action Plan*. Prepared for CCG Ontario, LLC. September 2016.

²¹ DTSC. (2016). Letter from Eileen Mananian – Approval of the Final Groundwater Remedial Investigation/Feasibility Study and Remedial Action Plan, Former Kaiser Steel Mill, Fontana, California. September 13, 2016

²² RPS Iris Environmental (2016). *Draft Remedial Design and Implementation Plan, Sitewide Groundwater, Former Kaiser Steel Mill Site, San Bernardino County, California*. November 3, 2016.

²³ Long-term includes at least 30 years of operations and maintenance for each OU.

²⁴ SCS Engineers. (1995). *Operation & Maintenance Agreement – Operable Unit No. 2*. Prepared for Kaiser Resources, Inc. September 1995.

²⁵ Shaw Environmental, Inc. (2010). *Operations and Maintenance Plan – East Slag Pile Landfill Area, Former Kaiser Steel Mill Facility, Fontana, California*. Prepared for CCG Ontario, LLC. June 2010.

²⁶ Shaw Environmental, Inc. (2010). Operations and Maintenance Plan – Chemwest Upper Ponds/Consolidated Waste Cell, Above-Ground Storage Tanks, Chrome Ponds, and Adjacent Areas, Former Kaiser Steel Mill Facility, Fontana California. Prepared for CCG Ontario, LLC. June 2010.

semi-annual basis. To date, two *Sitewide Five-Year Review Reports* have been submitted to and approved by the DTSC, including the first one in 2016 and the second one in 2023. The third Five-Year review will be conducted in the second half of 2025.²⁷ Also in 2016, it was determined that MW-03 was unable to be sampled and, thus, sampling was discontinued at the well. On February 13, 2024, CCG submitted a *Revised Downgradient Well Installation Work Plan* to install MW-27 to replace MW-03.²⁸ On April 30, 2024, the DTSC reviewed and approved the workplan.

An initial proposed site-wide groundwater monitoring program for OU-5 was included in the 2016 RDIP. Once CCG finalizes the Revised RDIP and the DTSC approves it, monitoring activities for OU-5 will commence.

Watermaster samples eleven monitoring wells annually at four downgradient locations for the Key Well Groundwater Quality Monitoring Program (KWGWQMP) and provides monitoring results to CCG upon request. These key wells include five Former Kaiser Steel Mill site monitoring wells in two locations and six Chino Basin Management Zone 3 (MZ-3) monitoring wells in two locations shown in Exhibit 1. Table 3 below summarizes the contaminants with concentrations that exceeded the MCL at one or more monitoring wells in the KWGWQMP over the last five years from July 2020 to June 2025.

Table 3. Concentration of Contaminants Detected above the MCL at Key Wells Sampled by Watermaster between July 2020 and June 2025

Contaminant	MCL	Max Concentration	No. of Wells That Exceeded MCL
1,1-Dichloroethene	6 μgl	14 μgl	1
1,2,3-Trichloropropane	0.005 μgl	0.0085 μgl	1
Chromium	50 μgl	14 μgl	3
Hexavalent Chromium	10 μgl	15 mgl	4
Nitrate ^(a)	10 mgl	10 μgl	2
Perchlorate	6 μgl	610 mgl	1
TDS	500 mgl	78 mgl	4
Turbidity	5 NTU	68 NTU	0
Trihalomethanes	80 μgl	14 μgl	1

Notes:

Not all key wells were sampled in August and September 2021.

 μgl = micrograms per liter

mgl = milligrams per liter

NTU = nephelometric turbidity unit

(a) Nitrate as nitrogen

Watermaster will conduct its 2025 annual KWGWQMP groundwater sampling by the end of 2025.

RECENT ACTIVITY

CCG recently addressed DTSC's comments on the Revised RDIP and submitted an Updated RDIP to the DTSC for review on July 11, 2025. Once the DTSC approves the Updated RDIP, monitoring activities for OU-5 will commence.

WEST YOST K-C-941-00-00-PEG-WP-xTM S KAISER PLUME

²⁷ RPS Iris Environmental (2016). Final Sitewide Five-Year Review Report. Prepared for CCG Ontario LLC. April 2016.

²⁸ Citadel EHS. (2024). Revised Downgradient Well Installation Work Plan. Prepared for CCG Ontario, LLC. February 13, 2024.

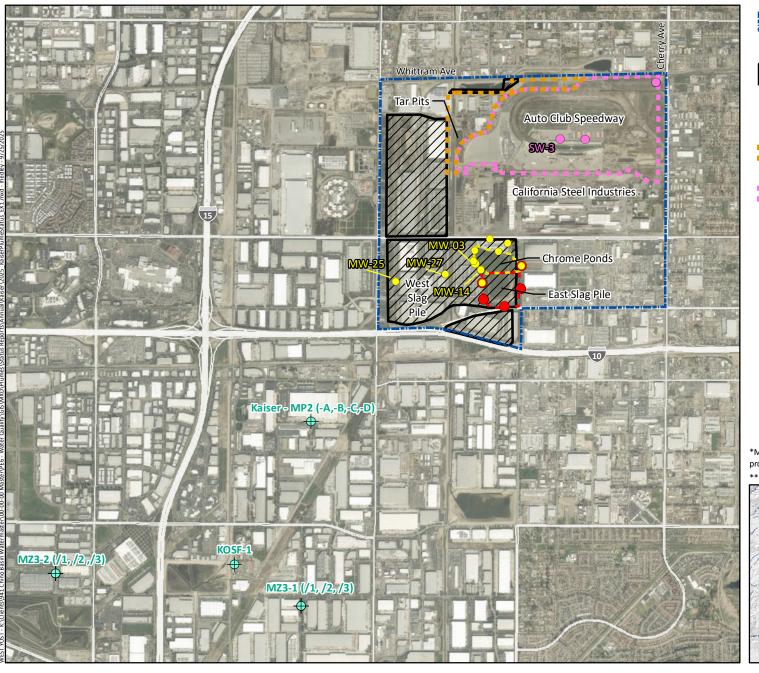
Semi-annual groundwater monitoring events for OU-2 and OU-3, and quarterly groundwater monitoring events for OU-4 continued pursuant to their respective operations and maintenance plans.

- OU-2: The most recent monitoring event conducted during the first half of 2025²⁹ showed chloroform exceeded its public health goal (PHG) of 0.4 μgl at two wells and hexavalent chromium exceeded its PHG of 0.02 μgl at all five wells. There were, however, no exceedances of MCLs for COCs at OU-2. Nitrate, which is not a COC did exceed its MCL of 10 μgl at all five wells. Overall, results from the sampling event were consistent with historical groundwater monitoring results and confirm that the remedial action is performing as designed.
- OU-3 and OU-4: The most recent monitoring events conducted during the first half of 2025³⁰ showed hexavalent chromium above its PHG (0.02 μgl) at OU-3, but there were, however, no exceedances of MCLs for any of the COCs. At OU-4, during the second quarter 2025 monitoring event, chloroform, carbon tetrachloride, and hexavalent chromium exceeded their PHGs, with the latter two also exceeding MCLs. Additional exceedances of MCLs were observed in OU-3 and OU-4 during the first half of 2025 for other analytes including aluminum, arsenic, chromium, iron, lead, manganese, nitrate, consistent with the previous sampling events. Table 4 provides a summary of COC concentrations for OU-3 and OU-4 from the first semi-annual and second quarter 2025 sampling events.

Table 4. Maximum Concentration of Contaminants of Concern for 2025 Semi-Annual and Quarter 2
Monitoring at OU-3 and OU-4

Contaminant	Primary MCL, μgl	Max Concentration, μgl	Number of Wells Exceeded MCL
Hexavalent Chromium	10	153	8
Carbon Tetrachloride	0.5	2.27	1
Chloroform	80	2.31	0
Notes: µgl = micrograms per liter			

On June 30, 2025, CCG submitted a Revised Downgradient Well Installation Report, detailing the installation and development of MW-27 in October 2024 to replace MW-03.³² Well MW-27 was installed approximately 1,515 feet west-southwest of well MW-03 and was sampled for the first time during the 2024 fourth quarter monitoring event. Results were included in the *Fourth Quarter 2024 CCAC groundwater monitoring report*.³³ Overall, sampling results at MW-27 indicate that no analytes exceed their respective MCLs, except for hexavalent chromium, which minimally exceeded the MCL.


WEST YOST K-C-941-00-00-PEG-WP-xTM S KAISER PLUME

²⁹ Citadel EHS (2025). First Semi-Annual 2025 Groundwater Monitoring Report Auto Club Speedway, Operable Unit No. 2, Former Kaiser Steel Mill San Bernardino County, CA. Prepared for CCG Ontario LLC. June 30, 2025.

³⁰ Citadel EHS (2025). Groundwater Monitoring Report – First Quarter 2025 Chemwest Upper Ponds/Consolidated Waste Cell, Above Ground Storage Tanks, Chrome Ponds, and Adjacent Areas (CCAC) and First Semi-Annual 2025 East Slag Pile Landfill (ESPLA), Operable Unit Nos. 3 and 4, Former Kaiser Steel Mill, San Bernardino County, CA. Prepared for CCG Ontario LLC. June 17, 2025.

³² Citadel EHS. (2025). Revised Downgradient Well Installation Report. Prepared for CCG Ontario, LLC. June 30, 2025.

³³ Citadel EHS. (2025). Groundwater Monitoring Report – Fourth Quarter 2024 Chemwest Upper Ponds/Consolidated Waste Cell, Above Ground Storage Tanks, Chrome Ponds, and Adjacent Areas (CCAC) and 2024 CCAC Annual Report Operable Unit No. 4. Prepared for CCG Ontario, LLC. April 18, 2025.

Original Property Extent of Former Kaiser Steel Mill

Property Extent Purchased by CCG Ontario From Kaiser Ventures Inc. in 2000 (592 acres)

Operable Unit (OU) Boundaries

OU-1

OU-3

613

OU-2

OU-4

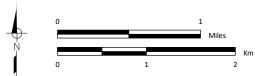
Nolls* (somo locatio

CCG Site Monitoring Wells* (some locations have multiple wells at various depths)**

OU-2

OU-4

OU-3


Monitoring Wells Sampled Annually by Watermaster for the KWGWMP (some locations have wells at various depths)

^{**}Labels indicate wells that are mentioned in the report.

Prepared by:

Prepared for:

Former Kaiser Steel Mill and CCG Ontario Plume

^{*}Multiple wells are part of more than one OU monitoring program and are shown as overlapping wells.

Annual Plume Status Report

Milliken Landfill Plume October 2025

CONTAMINANTS

The primary contaminant is trichloroethene (TCE). The California maximum contaminant level (MCL) for TCE is 5 micrograms per liter (μ gl). The maximum TCE concentration detected in groundwater samples collected from wells within the plume area during the last five years (July 2020 to June 2025) is 9.0 μ gl (measured at well M-8B in October 2024). The highest concentration of TCE ever measured on site is 178 μ gl (measured at well M-2B in April 1997). Other contaminants of concern include the following volatile organic compounds (VOCs): tetrachloroethene (PCE), dichlorodifluoromethane, trichlorofluoromethane, 1,1-dichloroethane, and cis-1,2-dichloroethene.

LOCATION

The Milliken Sanitary Landfill (MSL) is located in the City of Ontario along the northwest intersection of Milliken Avenue and Mission Boulevard. The MSL occupies an area of approximately 196 acres, about one mile west of Interstate 15 and 1.2 miles southeast of Ontario International Airport. The MSL is owned and managed by the County of San Bernardino Solid Waste Management Division (County). The MSL TCE plume extends downgradient from the site in a southwestern direction. The Chino Basin Watermaster (Watermaster) last updated its delineation of the extent of the plume in the *2024 State of the Basin Report*. This characterization is based on the five-year maximum TCE concentration measured over the period of July 2019 through June 2024. The extent of the plume is about 2,400 feet wide and 1,700 feet long. Exhibit 1 shows the location and extent of the TCE plume as delineated by Watermaster.

SITE HISTORY AND CLOSURE

The MSL was operated as a Class III Municipal Solid Waste Management Unit, accepting non-hazardous waste from 1958 to March 1999. On June 24, 1991, the Santa Ana Regional Water Quality Control Board (Santa Ana Water Board) issued Cleanup and Abatement Order (CAO) No. 91-92 to the County and other landfill operators in the Santa Ana Region.² The order required the correction of drainage and erosion control deficiencies on the landfill property that could potentially cause the discharge of pollutants to groundwater. In 1994, the CAO was rescinded when the landfills achieved compliance, and concurrently, Order No. 94-17 was adopted to amend the Waste Discharge Requirements (WDRs) for all landfills in the Santa Ana Region and combine them under one WDR and Monitoring and Reporting Program (M&RP).³

¹ West Yost Associates. (2025). *Chino Basin Optimum Basin Management Program, 2024 State of the Basin Report.* Prepared for Chino Basin Watermaster. September 2025.

² Santa Ana Water Board. (1991). *Cleanup and Abatement Orders for County and City Landfills (CAO) No. 91-92*. Letter from Gerard J. Thibeault to the County of San Bernardino Solid Waste Management Department. June 24, 1991.

³ Santa Ana Water Board. (1994). *Tentative Order No. 94-17, Amending Waste Discharge Requirement for Municipal Solid Waste Landfills Within the Santa Ana Region*. Letter from Kurt V. Berchtold to the County of San Bernardino Solid Waste Management Department. February 9, 1994.

In 1996, the Santa Ana Water Board issued Cease and Desist Order No. 96-41 for the MSL for failure to maintain the drainage and erosion control systems.⁴ In October 1999, the Santa Ana Water Board approved the *Final Closure and Post Closure Maintenance Plan* for the MSL.⁵ The MSL began its multiphase closure process while still accepting waste. Phase one, termed the "East Mound Closure", was completed in March 1997, and was a pilot project to aid in the design of a soil cover for the rest of the landfill to prevent soil contaminants from leaching into the groundwater during precipitation events. Phase two, termed the "North and East Slope Closure", was completed in 1997 and included the construction of a six-foot-thick monolithic cover over 45 acres of the landfill. The final phase of the landfill closure was completed in March 2005 when the remaining 72 acres of the landfill were covered with a four-foot-thick monolithic cover.

Since its closure, the County maintains the MSL drainage and erosion control systems to ensure, to the greatest extent possible, that ponding, infiltration, inundation, erosion, slope failure, and washout are prevented during peak storm flows. The drainage control facilities consist of a network of earthen berms, benches, asphalt down drains and V-channels, concrete channels, reinforced concrete pipes, and sedimentation basins.

Since 2017, the County has leased a portion of the MSL property to PVN Milliken, LLC for a photovoltaic solar facility. The three-megawatt power generating solar facility consists of about 14.5 acres of solar panels located on the top and intermediate decks of the closed landfill. Exhibit 1 shows the footprint of this facility.

REGULATORY ORDERS

- Waste Discharge Requirements (WDR) and Monitoring and Reporting Program (M&RP)
 Order No. 81-3 and subsequent WDRs and M&RPs Order Nos. 93-57, 94-17, 96-40, 98-89,
 and R8-2015-0040 (current). Requirements for the design, construction, and maintenance of
 run-on runoff drainage control systems at the landfill and the supportive monitoring and
 reporting requirements. Orders Nos. 93-57, 94-17, 96-40, and 98-89 are combined WDRs
 and M&RPs for all landfills in the Santa Ana Region.
- CAO Order No. 91-92. Requirement for the MSL to correct drainage and erosion control
 deficiencies that existed on the landfill property.
- Cease and Desist Order No. 96-41. Requirement for the MSL to submit a workplan with a schedule for the design and construction of a permanent and effective drainage and erosion control system and for the implementation of the workplan.
- WDRs R8-2002-0033, amended by R8-2002-0085 and R8-2013-0020. General WDRs for the re-injection/percolation of extracted and treated groundwater within the Santa Ana Region. Terminated in May 2019 because the pump-and-treat system is no longer operable.6
- Water Code Section 13267 Order No. R8-2020-0033 (For the Determination of the Presence of Per- and Polyfluoroalkyl Substances (PFAS) at Closed Municipal Solid Waste Landfills Within the Santa Ana Region, San Bernardino County). Requirement to prepare workplan, conduct sampling and analysis, and submit sampling results to determine the presence of PFAS.

⁴ Santa Ana Water Board. (1996). Tentative Cease and Desist Order No. 96-41, for Violations of WDRs (Order No. 81-3, as Amended by Order No. 93-57, Order No. 94-17, and Order No. 96-40) at the Milliken Sanitary Landfill, San Bernardino County. April 5, 1996.

⁵ Project Navigator, Ltd. (1999). *Final Postclosure Maintenance Plan, Milliken Sanitary Landfill*. Prepared for the County of San Bernardino Solid Waste System Division. September 1999.

⁶ Santa Ana Water Board. (2019). *Termination of Regulatory Coverage Under Waste Discharge Requirements, Order No. R8-2002-0033, Groundwater Cleanup Project for Milliken Sanitary Landfill, San Bernardino County*. Letter from Cindy Li to the County. May 9, 2019.

REGULATORY AND MONITORING HISTORY

On February 26, 1981, the Santa Ana Water Board adopted WDR No. 81-3 for the discharge of municipal solid wastes to land at the MSL.⁷ The WDR addressed the placement, monitoring, and reporting of waste at the landfill; however, it did not require groundwater monitoring. In 1987, groundwater monitoring began with the installation of five monitoring wells as part of the Solid Waste Assessment Test (SWAT) investigation.⁸ The initial monitoring results indicated that there were multiple contaminants in the groundwater underlying and adjacent to the landfill at concentrations significantly above background levels. The contaminants included multiple VOCs: dichlorodifluoromethane, 1,1-dichloroethene, PCE, and TCE.

On May 1989, the Santa Ana Water Board requested that the County investigate the nature and extent of the VOC contamination. The County submitted a workplan to the Santa Ana Water Board in July 1989 to implement the Phase I Evaluation Monitoring Program (EMP) and began implementing the approved Phase I EMP in 1992. During the implementation of the Phase I EMP, the County installed ten new monitoring wells: eight wells downgradient from the facility and two wells upgradient from the facility. Contaminants including TCE and PCE were detected in the new downgradient monitoring wells. After the implementation of the Phase I EMP, the County installed three additional monitoring wells along the southern boundary of the property, as well as one well upgradient and six wells downgradient of the property to further characterize the lateral and vertical extent of the TCE plume.

In January 1996, the County submitted a workplan for the Phase II EMP to install two additional monitoring wells along the southern boundary of the facility and two additional monitoring wells downgradient. The workplan was approved by the Santa Ana Water Board in February 1996. 11 Under the direction of the Santa Ana Water Board, the County completed the Phase II EMP and an Engineering Feasibility Study in 1998. 12,13 Groundwater flow modeling was performed to support the selection of an appropriate remediation strategy. 14

The Santa Ana Water Board approved a remediation alternative that included: (1) a pump-and-treat system for onsite contaminated groundwater and (2) monitored natural attenuation for offsite contaminated groundwater. Construction of the Point of Compliance Corrective Action Program (CAP) pump-and-treat system was completed on March 4, 1999 and consisted of 13 groundwater extraction wells located at the downgradient edge of the MSL site. Offsite monitoring for natural attenuation began at four offsite wells in 1998.

⁷ Santa Ana Water Board. (1981). *Order No. 81-3, Waste Discharge Requirements for the County of San Bernardino Solid Waste Management, Milliken Sanitary Landfill.* February 26, 1981.

⁸ IT Corporation. (1989). *Final Report Solid Waste Assessment Test Milliken Sanitary Landfill, Project No. 240275*. Prepared for County of San Bernardino Environmental Public Works Agency Solid Waste Management Department. June 1898.

⁹ IT Corporation. (1989). *Quarterly Report: Subchapter 15 Detection Monitoring Program for Cajon, Colton, Midvalley, Milliken, Plunge Creek, San Timoteo, and Yucaipa Landfills*. Prepared for County of San Bernardino Solid Waste Management Division. July 1989.

¹⁰ Converse Consultants Inland Empire. (1994). *Groundwater Contamination Evaluation, Milliken Sanitary Landfill*. Prepared for the County of San Bernardino Solid Waste Management Division.

¹¹ Santa Ana Water Board. (1996). *Milliken Landfill – Addendum to Phase II Workplan, Contaminant Plume Investigation*. Letter from Dixie B. Lass. February 6, 1996.

¹² Geo-Logic Associates. (1998). *Phase II Evaluation Monitoring Report, Milliken Sanitary Landfill*. Prepared for the County of San Bernardino Solid Waste System Division. May 1998.

¹³ Geo-Logic Associates. (1998). *Engineering Feasibility Study, Milliken Sanitary Landfill*. Prepared for the County of San Bernardino Solid Waste System Division. May 1998.

¹⁴ Geo-Logic Associates. (1999). *Groundwater Flow Model, Milliken Sanitary Landfill*. Prepared for the County of San Bernardino Solid Waste System Division. February 1999.

In 2000, groundwater levels began to decline monotonically in the vicinity of the MSL and by 2007, the groundwater level dropped below the total depths of all 13 onsite extraction wells and five offsite monitoring wells. In response, the Santa Ana Water Board requested that the County complete an updated feasibility study to evaluate the effectiveness of the remediation strategy and the extent of the contaminant plume. In March 2013, the County finalized the Updated Engineering Feasibility Study for the MSL (2013 Feasibility Study). The 2013 Feasibility Study evaluated several potential alternative treatments to mitigate the plume. The County concluded that monitored natural attenuation was the appropriate remediation alternative. This revised remediation alternative was approved by the Santa Ana Water Board on May 15, 2013.

The County and PVN Milliken, LLC submitted a revised Final Post-Closure Maintenance Plan in November 2016 and a land use plan in December 2016 to modify the MSL's end use plan to include the solar plant on the landfill surface. The Santa Ana Water Board approved the plans in January 2017. The revised post-closure maintenance plan provides a basis for plan inspection, maintenance, and monitoring of the MSL during the post-closure maintenance period. The revised land use plan describes PVN Milliken's modification to the landfill, and its responsibility to maintain and monitor the land in a way that does not impact groundwater and surface water quality.

In 2018, the County performed an evaluation of offsite impacts to groundwater at the MSL in response to a June 17, 2015 letter from the Santa Ana Water Board. The 2015 letter requested that the evaluation of offsite impacts include the following actions: (1) update the 1998 groundwater-flow model to incorporate the non-operating groundwater pump-and-treat system and use updated monitoring data; (2) collect gas samples from specified landfill gas probes; and (3) prepare a report and evaluate the need for corrective action based on the findings. Based on the results of the updated modeling and monitoring for the offsite evaluation, the County proposed the installation of a downgradient monitoring well and a soil-gas investigation to determine whether soil gas mitigation is necessary. The Santa Ana Water Board accepted the proposed actions on March 29, 2018. The santa Ana Water Board accepted the proposed actions on March 29, 2018.

REMEDIAL ACTION

As previously noted, the original remedial action plan of a pump-and-treat system and monitored natural attenuation was revised due to declining water levels. All 13 onsite extraction wells and five of the eight offsite monitoring wells dried up as groundwater elevations declined below well depths, causing the pump-and-treat system to cease operations in 2007. The 2013 Feasibility Study identified monitored natural attenuation, coupled with the existing mitigation measures, as the best remedial alternative of downgradient groundwater impacts and included certain trigger points that would require mitigation measures to be initiated. These trigger points include:

¹⁵ Geo-Logic Associates. (2013). *Updated Engineering Feasibility Study for Corrective Action, Milliken Sanitary Landfill County of San Bernardino, California*. Prepared for the County of San Bernardino Solid Waste System Division. March 2013.

¹⁶ Project Navigator, Ltd. (2016). Final Postclosure Maintenance Plan Milliken Sanitary Landfill 36-AA-0054 Ontario, California. Prepared for the County of San Bernardino Department of Public Works – Solid Waste Management Division on behalf of PVN Milliken, LLC. September 10, 1999. Revised June 2004. Revised 2014. Revised November 2016.

¹⁷ Project Navigator, Ltd. (2016). *Land Use Plan for the Milliken Sanitary Landfill 36-AA-0054 Ontario, California, County of San Bernardino*. Prepared for the County of San Bernardino Department of Public Works – Solid Waste Management Division on behalf of PVN Milliken, LLC. December 2016.

¹⁸ Santa Ana Water Board. (2017). Approval of the Revised Final Post Closure Maintenance Plan and Land Use Plan for Milliken Landfill, Ontario, San Bernardino County. January 19, 2017.

¹⁹ Santa Ana Water Board. (2015) Groundwater Impacts Evaluation for Milliken Sanitary Landfill, San Bernardino County. June 17, 2015

²⁰ Santa Ana Water Board. (2018). *Evaluation of Off-Site Impacts to Groundwater at the Milliken Sanitary Landfill, San Bernardino County Global ID: L1000745844*. March 29, 2018. Letter from Keith Person on behalf of Cindy Li.

Chino Basin Watermaster October 2025

- When the total VOC load²¹ in samples from downgradient monitoring well M-8A or M-8B exceeds the model-predicted VOC concentrations for two consecutive quarters, this will trigger improvements to the existing landfill gas extraction system.
- Once improvements to the landfill gas extraction system are implemented and a statistically significant increasing VOC concentration trend is identified in monitoring well M-8A or M-8B over a one-year period, this will trigger a requirement for additional mitigation measures to be implemented.

The trigger points were approved by the Santa Ana Water Board in 2013.²² If additional remedial action is deemed necessary based on these trigger points, the most appropriate and cost-effective remediation measure will be evaluated at that time. The 2013 Feasibility Study also specified that if VOC concentrations increase to one-half of the model-predicted VOC concentrations in wells at the center of the plume, an additional offsite monitoring well would be necessary near well M-19 to monitor the natural attenuation of the plume in the lower aguifer as the plume moves away from the site.

Based on results from the 2018 evaluation of offsite impacts to groundwater described in the previous section, the County conducted two pilot studies on a Soil Vapor Extraction (SVE) system. From October to December 2019 the County conducted the second SVE pilot test (Pilot Test No. 2) to evaluate the feasibility of using the now dry extraction wells for the pump-and-treat system to remove VOCs from the soil vapor in the vadose zone above the water table.²³ The SVE pilot test involved using all the 13 dry groundwater extraction wells installed along the downgradient edge of the MSL (see Exhibit 1) that connect to a 4-inch conveyance header-line routing to a SVE treatment unit. The County submitted a report to the Santa Ana Water Board on February 12, 2020 describing the results of the pilot test, which concluded that full-scale operation of an SVE system at the MSL will be an effective means to minimize the potential for VOC impacts to groundwater without negatively impacting the operations of the landfill gas collection system at the site.²⁴ In May 2023, the South Coast Air Quality Management District issued a permit for the SVE extraction and treatment system and in August 2023, an SVE system (SVE-1) was installed to utilize the 13 existing dry groundwater extraction wells for the removal of VOCs in soil to minimize potential VOC impacts to groundwater. The County also installed an additional SVE system (SVE- 2) in the southern border of the MSL during the same month. Since the SVE wells began operation, approximately 125.22 pounds of VOCs have been removed from the soil.²⁵

²¹ Statistically significant increasing or decreasing trends are determined using Sen's Slope/Mann Kendall trend test.

²² Santa Ana Water Board. (2013). *Identification of Triggers for Additional Corrective Action System for the Milliken Landfill, San Bernardino County*. Letter dated May 15, 2013.

²³ Geo-Logic Associates in Association with Invirotreat Inc. (2020). *Pilot Test No. 2 Results Soil Vapor Extraction System Milliken Sanitary Landfill San Bernardino, California*. February 12, 2020.

²⁴ Geo-Logic Associates in Association with Invirotreat Inc. (2020). *Pilot Test No. 2 Results Soil Vapor Extraction System Milliken Sanitary Landfill San Bernardino, California*. February 12, 2020.

²⁵ San Bernardino County Department of Public Works – Solid Waste Management Division. (2025). *Second Quarter 2025 Monitoring Report Point-of-Compliance Corrective Action System, Milliken Sanitary Landfill, San Bernardino County, California.* July 7, 2025.

MONITORING AND REPORTING

The County conducts groundwater, surface water, and soil-pore gas monitoring at the MSL. The monitoring program consists of 17 groundwater monitoring wells, 11 piezometers, and three surface water monitoring stations. There are also five soil-pore gas monitoring probes and one landfill gas condensate station for monitoring VOCs in soil and vapor. Groundwater quality and groundwater levels are collected quarterly at the monitoring wells that are not dry (more than half are typically dry). Surface-water quality sampling is conducted quarterly when there is water at the sites. Field soil-gas screening is performed semi-annually during the second and fourth quarters, and a measurement is collected for laboratory analysis when methane is detected at a concentration that is greater than five percent in volume. Landfill gas condensate sampling is conducted annually in the fourth quarter. Prior to being converted the SVE wells, the extraction wells were checked quarterly but were consistently dry. Air from the SVE wells is sampled monthly, and the SVE system is sampled weekly. Additionally, the County also submits monthly inspection reports of site maintenance to the Santa Ana Water Board. These reports and all data that have been collected since 2005 are posted on the State Water Resources Control Board GeoTracker website.

The groundwater data collected during the quarterly sampling events is statistically analyzed to identify increasing or decreasing trends of VOCs and other constituents of concern. The quarterly groundwater monitoring data are also used to assess the natural attenuation of the offsite extent of the plume. VOC concentrations at monitoring wells M-8B and M-8A (if not dry) are used to determine if there are triggers that would necessitate further corrective actions. These triggers are based on model-predicted concentrations from the 1999 groundwater modeling preformed to evaluate the pump-and-treat system. Exhibit 1 shows the locations of wells M-8A and M-8B. The following table shows the model-predicted VOC concentrations over time:

Table 1 Mode	Dradicted Tata	I VOC Load to	Trigger Pemedia	Action at the MSL
rabie 1. iviode	n Predicted Tota	II VUL LOAG LO	i rigger Kemedia	I ACLION AL LNE IVISL

Year	Total VOC Load at M- 8A or M-8B ^(a) , μgl	Year	Total VOC Load at M- 8A or M-8B ^(a) , μgl	Year	Total VOC Load at M- 8A or M-8B ^(a) , μgl
2013	120	2027	123	2041	50
2014	123	2028	117	2042	45
2015	125	2029	112	2043	40
2016	128	2030	106	2044	35
2017	130	2031	101	2045	30
2018	130	2032	96	2046	25
2019	129	2033	90	2047	20
2020	128	2034	85	2048	18
2021	127	2035	80	2049	16
2022	126	2036	75	2050	14
2023	125	2037	70	2051	13
2024	124	2038	65	2052	12
2025	124	2039	60	2053	11
2026	123	2040	55	2054	10

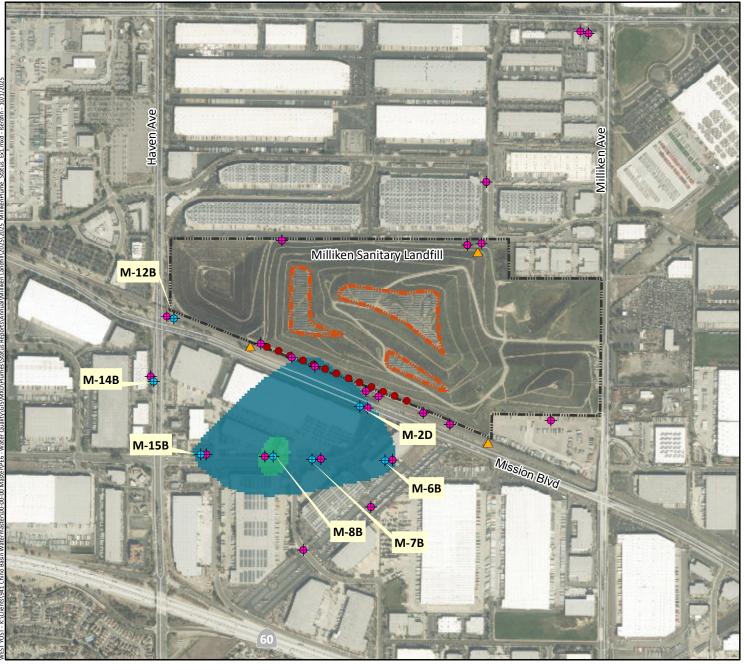
Notes:

(a) Total VOC load (µgl) equals the sum of all detected VOC concentrations in a given sample.

²⁶ https://geotracker.waterboards.ca.gov/profile_report?global_id=L10007458441

In November 2020, the County conducted a one-time monitoring event for per- and polyfluoroalkyl substances (PFAS) pursuant to an Investigative Order by the Santa Ana Water Board pursuant to California Water Code Section 13267.²⁷ Sampling for PFAS occurred at four monitoring wells (M-5B, M-2D, M-6B, M-15B) and one landfill gas condensate location. The final report was submitted to the Santa Ana Water Board on December 30, 2020. Perfluoro-n-pentanoic acid (PFPeA) and 6:2 fluorotelomer sulfonate (6:2 FTS) were detected at concentrations above the laboratory reporting limits at wells M-5B, M-6B, and M-15B, and perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOS) were detected above the laboratory reporting limits at well M-5B. The concentration of PFOS was 4.5 nanograms per liter (ngl), which was below the California (CA) notification level of 6.5 ngl at the time but is above the current federal MCL of 4 ngl.²⁸ The concentration of PFHxS is below the CA notification level of 10 ngl. All other PFAS constituents were non-detect.

RECENT ACTIVITY


The County's most recent monitoring event occurred in May of 2025 and the results were reported in the Second Quarter 2025 Monitoring Report submitted to the Santa Ana Water Board on July 31, 2025.²⁹ During the sampling event, groundwater levels were measured at nine monitoring wells and two piezometers, and groundwater-quality samples were collected at seven monitoring wells. The rest of the monitoring wells and piezometers were dry. During the second quarter sampling event all three surface water sites were dry and therefore were not sampled. Exhibit 1 shows the monitoring wells that were sampled during the second quarter of 2025, and the wells that were dry. Key findings include:

- Overall, observed groundwater monitoring results were consistent with historical results.
- TCE and PCE concentrations exceed the MCL of 5 ugl in M-8B, but are well below the level to trigger corrective action (See Table 1).
- VOC concentrations in site monitoring wells appear to be either stable or decreasing and with the continued operation of the new SVE system, VOC concentrations are expected to continue to decline.
- Overall, the concentrations of VOCs appear to be either stable or decreasing and no corrective action was triggered through the first half of 2025.
- No methane was detected in the soil-pore gas screening samples, therefore no samples
 were collected for laboratory sampling. Additionally, no newly detected compounds were
 identified in the landfill gas condensate sample collected during the fourth quarter 2024 so
 retesting was not required in April 2025.
- During the second quarter 2025 monitoring period the SVE system removed a total of approximately 17.3 pounds of VOCs.

²⁷ Santa Ana Water Board. (2020). Water Code Section 13267 Order No. R8-2020-0033, For the Determination of the Presence of Per- and Polyfluoroalkyl Substances (PFAS) at Closed Municipal Solid Waste Landfills Within the Santa Ana Region, San Bernardino County. July 21, 2020.

²⁸ Geo-Logic Associates. (2020). Results for Sampling and Analyses of Per – and Polyfluoroalkyl Substances at Select Santa Ana Region Closed Landfill Facilities. December 30, 2020.

²⁹ Geo-Logic. (2025). Second Quarter 2025 Monitoring Report Water Quality Monitoring Program Corrective Action Program Milliken Sanitary Landfill Ontario, California. Prepared for San Bernardino County Solid Waste Management Division. July 31, 2025.

Maximum Concentration (μgL) July 2019 - June 2024

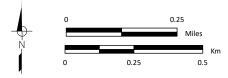
> TCE $0.5 \text{ to } \le 5$ > 5 to ≤ 10 > 10 to ≤ 20 > 20 to ≤ 50 $MCL = 5 \mu gl$

(Delineated by Watermaster in the 2024 State of the Basin Report)

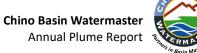
County of San Bernardino Monitoring Wells* and Piezometers

- Sampled in 2025
- Dry in 2025

Surface Water Monitoring Station


- △ Sampled in 2025
- △ Dry in 2025
- Former Groundwater Extraction Well and Current SVE Well
- **Extent of Solar Facility**
- Milliken Sanitary Landfill Boundary

* Wells are labeled by well name if mentioned in the report



Prepared by:

Prepared for:

Annual Plume Status Report

Stringfellow Plume October 2025

CONTAMINANTS

The primary contaminants at the Stringfellow site are perchlorate, trichloroethene (TCE), and chloroform. The California maximum contaminant levels (MCL) for perchlorate and TCE are 6 micrograms per liter (µgl) and 5 µgl, respectively. Chloroform does not have an MCL but is assessed to a cleanup level of 6 µgl for the Stringfellow site. The maximum contaminant concentrations detected in groundwater for the recent five years within the various designated zones of the Stringfellow site are shown in Table 1 below.

Table 1. Five-Year Maximum Contaminant Concentrations in Stringfellow by Zone between July 2020 and June 2025

		Five-Year Maximum Concentration – July 2020 – June 2025, μgl			
Contaminant	MCL or Cleanup Level, μgl	Zones 1-3 (Within Pyrite Canyon)	Zone 4 (Downgradient of Pyrite Canyon)		
perchlorate	6	10,000	86		
TCE	5	240,000	24		
chloroform	6	7,500	15		

Additional contaminants at the site include other volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, para-chlorobenzene sulfonic acid, n-nitrosodimethylamine, and various heavy metals. Furthermore, the groundwater beneath the former waste evaporation ponds is highly acidic with pH levels measuring below 4.

LOCATION

The Stringfellow plume is located in the City of Jurupa Valley in the eastern portion of the Chino Basin in Riverside County. The plume extends south-southwest from Pyrite Canyon in the Jurupa Mountains which is the location of the former Stringfellow hazardous waste facility (Stringfellow site). The plume is geographically divided into four groundwater zones in consideration of various operational and remediation activities: three in Pyrite Canyon, and one downgradient from the canyon. These zones shown in Exhibit 1, include:

Zone 1 (On-site/Upper Mid-Canyon Area) is located in the northern most part of Pyrite Canyon and includes the original 17-acre disposal facility. It is divided into two areas (Zone 1A and Zone 1B) that are separated by a man-made clay barrier constructed downgradient of the evaporation ponds in 1980 to mitigate subsurface flow. Zone 1A is located upgradient of the clay barrier and includes the former evaporation ponds. Zone 1B extends 600 feet south of the barrier below the evaporation ponds and includes the Pyrite Canyon Treatment Facility.

¹ Cleanup levels were established for TCE (5 μgl and equal to the MCL) and chloroform (6 μgl) in the Interim Records of Decision 4 by the United States Environmental Protection Agency.

- **Zone 2 (Mid-Canyon Area)** comprises the central portion of Pyrite Canyon and includes the Pre-Treatment Plant and a line of extraction wells.
- **Zone 3 (Lower Canyon Area)** extends from just south of the extraction wells in Zone 2 to just north of Highway 60 and includes the Lower Canyon Treatment Facility.
- **Zone 4** is the largest zone and extends from Highway 60 to immediately north of the Santa Ana River; it is a residential and light industrial area in the City of Jurupa Valley and includes the Community Well Head Treatment System.

In addition to these four zones, there are two areas defined by the United States Environmental Protection Agency (USEPA) in Pyrite Canyon (Area 1 and Area 2) where the USEPA conducts investigations to characterize potential additional sources of perchlorate that contribute to surface water runoff and groundwater contamination in Zones 1-4. These areas are also shown in Exhibit 1.

Exhibit 1 shows the general extent of the TCE plume originating from the former Stringfellow site with detectable concentrations of TCE greater than or equal to 0.5 μ gl, as delineated by the Chino Basin Watermaster (Watermaster) for the *2024 State of the Basin Report*.² The plume is approximately 3.2 miles long and 0.3 miles wide and extends from Zone 1 to the midpoint of Zone 4 near the Community Wellhead Treatment System.

Exhibit 1 also shows the general extent of the perchlorate plume originating from the Stringfellow site with concentrations greater than or equal to 6 μgl, as delineated in the *2021 Annual Groundwater Monitoring and Remedy Effectiveness Evaluation Report*.³ The perchlorate plume extends from Zone 1 approximately 0.94 miles south/southwest to Zone 3, and then extends again through Zone 4 approximately 3.6 miles to just north of the Santa Ana River. The width of the perchlorate plume varies between approximately 0.1 and 1 mile. There are also several smaller perchlorate plumes to the east and west of the main plume as shown in Exhibit 1. The source of these plumes is undetermined. Investigations by the USEPA in Areas 1 and 2 indicated that there are sources of perchlorate located upstream and lateral to the Stringfellow site that are contributing to the groundwater plume in addition to the perchlorate originating from the Stringfellow site.^{4,5} In 2022, the DTSC submitted a technical memorandum titled *Sources of Perchlorate in Pyrite Canyon, Riverside County, California* to the USEPA which identifies additional sources of perchlorate and calculates the perchlorate mass being contributed to the plume by each source.⁶ The technical memorandum concludes that the majority of perchlorate in groundwater in the Pyrite Canyon was due to surface water releases from other areas that infiltrated the unlined sections of Pyrite Creek.

² West Yost Associates. (2025). *Optimum Basin Management Program - 2024 State of the Basin Report*. Prepared for the Chino Basin Watermaster. September 2025.

³ Kleinfelder. (2025). 2021 Annual Groundwater Monitoring and Remedy Effectiveness Evaluation Report, Stringfellow Superfund Site. Prepared for California Department of Toxic Substances Control. August 29, 2025.

⁴ CH2M. (2017). *Draft Final Remedial Investigation Report EPA Area 1, Stringfellow Superfund Site, Jurupa Valley, California*. Prepared for U.S. Environmental Protection Agency, Region 9. April 2017.

⁵ Ramboll US Corporation. (2020). *EPA Area 2 Remedial Investigation Report, Stringfellow Superfund Site, Jurupa Valley, California*. Prepared for California Environmental Protection Agency, Department of Toxic Substances Control. April 6, 2020.

⁶ California Department of Toxic Substances Control. (2022). *Sources of Perchlorate in Pyrite Canyon, Riverside County, California*. Technical Memorandum. December 22, 2022.

The 2023 Final Zone 4 Data Gap Investigation Report assessed perchlorate in groundwater based on chemical composition. Based on the investigation, the DTSC updated its Conceptual Site Model to define two perchlorate plumes in Zone 4: (1) the Undifferentiated Perchlorate Plume that extends south towards the Santa Ana River and is attributed to releases from multiple sources in and near Pyrite canyon as well as perchlorate releases from sources in Jurupa Valley, including historical application of perchlorate-containing fertilizers; and (2) the Pyrite Canyon Synthetic Perchlorate Plume that extends to about 54th Street which is defined as the contiguous aquifer zone in which perchlorate concentrations exceed the MCL and the fraction of synthetic perchlorate is dominant (70% or greater). The Zone 4 remedy will target perchlorate contamination within the Pyrite Canyon Synthetic Perchlorate Plume. The extent of perchlorate in Zone 4 appears stable in the both the undifferentiated and synthetic plumes and concentrations are declining.

The extent of the chloroform plume, which is much smaller than the TCE and percolate plumes, is limited to Zones 1 and 2 and is not shown in Exhibit 1.

SITE HISTORY

Stringfellow Quarry Company Inc. operated the Stringfellow site as a Class I Hazardous Waste Disposal Facility from 1956 to 1972 pursuant to the issuance of a land use variance by the Riverside County Planning Commission in 1952. During this time, an estimated 34 million gallons of industrial liquid waste containing spent acids, caustics, solvents, pesticide byproducts, metals, and other organic and inorganic constituents—derived primarily from electroplating, metal finishing, and pesticide manufacturing—were deposited in as many as 20 evaporation ponds (located within Zone 1A on Exhibit 1). Liquid wastes were also sprayed into the air to reduce the volume of wastes accumulating in the ponds. In 1969, heavy rainfall caused the disposal ponds at the facility to overflow resulting in the discharge of contaminated liquids to Pyrite Creek. In 1978, heavy rains again threatened to cause the ponds to overflow and the Santa Ana Regional Water Quality Control Board (Santa Ana Water Board) authorized an 800,000-gallon release from the ponds to prevent a larger uncontrolled release caused by the heavy rains.

Between 1975 and 1980, following closure of the site, approximately 6.5 million gallons of liquid wastes were removed from the facility. Following the removal activities, the USEPA and the United States Coast Guard (USCG) assisted the Santa Ana Water Board with the initiation of response actions and site investigation studies. In October 1981, the Stringfellow site was placed on the USEPA Interim Priorities List of Hazardous Waste Sites. On December 30, 1982, the Stringfellow site was proposed for the USEPA's final National Priorities List (NPL) as a Superfund site, and on September 8, 1983 it was placed on the final NPL. In 1993 the Department of Toxic Substances Control (DTSC) assumed responsibility for maintenance of the Stringfellow site on behalf of the State of California through a Cooperative Agreement with the USEPA. Since that time, over 45 phases of investigation, feasibility testing, and remedial actions have been performed by various entities at the site. A record of these activities and associated reports can be found on the DTSC EnviroStor website.⁹

⁷ Kleinfelder, Inc. (2023). *Final Zone 4 Data Gap Investigation Report Jurupa Valley California*. Prepared for California Department of Toxic Substances Control. August 30, 2023.

⁸ U.S. Army Corps of Engineers. (2016). *Fifth Five-Year Review Report for Stringfellow Superfund Site Riverside County, California*. September 2016.

⁹ https://www.envirostor.dtsc.ca.gov/public/

REGULATORY ORDERS

From 1983 to 1990, the USEPA adopted four interim Records of Decision (RODs) to guide remediation efforts at the Stringfellow site. The following summarizes the four RODs and major remedial actions set forth therein:

- **ROD 1** (USEPA 1983).¹⁰ The first ROD directed completion of several initial abatement activities including: fencing the site, erosion control, hauling and disposal of contaminated liquids, and interim source control.
- **ROD 2** (USEPA 1984).¹¹ The second ROD included the construction of the Pre-Treatment Plant in the mid-canyon area located within Zone 2.
- **ROD 3** (USEPA 1987). The third ROD included the installation of an upgradient surface water diversion north of the original contamination site within Zone 1A, and the installation of a groundwater barrier system in the lower canyon area located within Zone 3.
- ROD 4 (USEPA 1990).¹³ The fourth ROD delineated the site into four geographic zones (Zones 1-4, as described above), and directed the construction of the Community Wellhead Treatment Facility in Zone 4, the dewatering of the of the original disposal area in Zone 1, field testing of soil vapor extraction, and field testing of the reinjection of treated groundwater in the upper canyon area.

A fifth and final ROD (ROD 5), outlining the final remedial action objectives for Zones 1, 2, 3, and 4, is currently being prepared based on the *Interim Final Technical Impracticability Evaluation* (Interim Final TIE) report and the *Final Supplemental Feasibility Study Addendum for Zones 1 to 3* (2022 Feasibility Addendum). The Interim Final TIE report states that while current remedial actions are effective at containing the plume, there are no remedial actions that would be effective at restoring groundwater to regulatory levels, while the Feasibility Addendum provides: (1) recommendations to optimize existing remedies; (2) additional remedial action objectives for Zone 3; and (3) recommendations for three Remedy Optimization Alternatives to reduce migration of site-related contamination from Zone 3 to Zone 4. The USEPA and DTSC will release a plan outlining the preferred remediation options for ROD 5. After selecting a remedy, the USEPA will issue the Final ROD 5 detailing the rationale and goals for the chosen approach.

.

¹⁰ United States Environmental Protection Agency (USEPA). (1983). *EPA Superfund, Record of Decision: Stringfellow Acid Pits Site*. USEPA ID: CAT080012826, OU01, Mira Loma, California. July 1983.

¹¹ United States Environmental Protection Agency (USEPA). (1984). *Record of Decision, Stringfellow Acid Pits, Summary of Remedial Alternative Selection*. July 1984.

¹² United States Environmental Protection Agency (USEPA). (1987). *Record of Decision: Stringfellow Acid Pits, Summary of Remedial Alternative Selection (Early Implementation Action)*. June 1987.

¹³ United States Environmental Protection Agency (USEPA). (1990). *Record of Decision: Stringfellow Hazardous Waste Site*. September 1990.

¹⁴ Ramboll US Consulting, Inc. (2022). *Interim Final Technical Impracticability Evaluation Report, Stringfellow Superfund Site, Jurupa Valley, California*. Prepared for California Environmental Protection Agency Department of Toxic Substances Control. March 11, 2022.

¹⁵ Ramboll US Consulting, Inc. (2022). *Final Supplemental Feasibility Study Addendum for Zones 1 to 3, Stringfellow Superfund Site, Jurupa Valley, California*. Prepared for California Environmental Protection Agency Department of Toxic Substances Control. March 11, 2022.

REMEDIAL ACTION

In 1980, prior to the first ROD, the Santa Ana Water Board adopted an interim abatement program to contain the waste and minimize the risk of further contaminant migration. Several remedial solutions were implemented, including the removal of liquid waste from ponds, partial neutralization and capping of wastes, the construction of a subsurface clay barrier wall downgradient from the pond area, and drainage control features.

Groundwater Extraction and Treatment System

Following the completion of remedial measures required by ROD 1 and the issuance of ROD 2, a groundwater extraction and treatment system was developed and has become the primary remedial action implemented at the site. The groundwater extraction and treatment system, which has expanded over time, currently consists of a network of over 70 extraction wells throughout Zones 1-4 and two treatment plants operated by the DTSC on behalf of the State of California: the Pyrite Canyon Treatment Facility and the Community Wellhead Treatment System. The Pre-Treatment Plant and Lower Canyon Treatment Facility are no longer active. Exhibit 1 shows the locations of the four treatment plants; the following is a brief description of each:

- Pyrite Canyon Treatment Facility (active). This plant is located in Zone 1B and treats contaminated groundwater from extraction wells in Zones 1, 2, 3, and 4 The Pyrite Canyon Treatment Facility was constructed in 2017 to replace the aging infrastructure of Pre-Treatment Plant and began operating on April 4, 2017. The treatment facility uses granular activated carbon (GAC) to treat for low pH, pesticides, metals, perchlorate, and VOCs. Treated effluent is stored onsite and then released to the Inland Empire Brine Line and the Orange County Sanitation Districts wastewater collection, treatment, and disposal facilities, under permit from the Santa Ana Watershed Project Authority. Some of the treated effluent is used for utility water at the treatment facility.
- Community Wellhead Treatment System (active). This plant is located in Zone 4 and treats
 contaminated groundwater pumped from two wells in Zone 4 for VOCs and perchlorate.
 Treated effluent is discharged to Pyrite Creek under an NPDES permit and can also be used
 for irrigation by local residents.
- **Pre-Treatment Plant (inactive).** This plant is located in Zone 2 and began operating in 1985 pursuant to the second ROD. It formerly treated VOCs in groundwater from extraction wells in Zones 3 and 4 and stored at the Lower Canyon Treatment Facility. The Pre-Treatment Plant was shut down on October 29, 2019, and since then groundwater from Zones 3 and 4 extraction wells is redirected to the Pyrite Canyon Treatment Facility for treatment.
- Lower Canyon Treatment Facility (inactive). This facility is located in Zone 3 and formerly treated groundwater pumped from extraction wells in Zones 3 and 4 for VOCs. Treated effluent from the Lower Canyon Treatment Facility was piped to and stored at the Pre-Treatment Plant and subsequently released to the Inland Empire Brine Line. Currently, the facility is in a standby state. Since October 29, 2019, groundwater extracted from Zones 3 and 4 has been first stored at the Lower Canyon Treatment Facility and then pumped for treatment at the Pyrite Canyon Treatment Facility.

In 2021, the DTSC submitted a report to the USEPA on results of the Pyrite Canyon Groundwater Flow Model, to further assess the effectiveness of groundwater extraction systems at preventing site-related chemicals in groundwater from migrating further down canyon and into Zone 4.¹⁶ The Pyrite Canyon Groundwater Flow Model demonstrates that groundwater flow is towards the center of Pyrite Canyon, consistent with the conceptual model and the observed extent of the perchlorate plume. It also confirmed that existing extraction systems are adequately capturing contaminants, except for areas located to the west of the extraction systems.

MONITORING AND REPORTING

Currently there are approximately 568 wells that are actively monitored for groundwater elevations and/or groundwater quality at and downgradient of the Stringfellow site. Groundwater monitoring is performed in accordance with the 2016 Site-Wide Groundwater and Surface Water Monitoring Plan and Sampling and Analysis Plan.¹⁷ The DTSC performs routine monitoring either annually or quarterly to evaluate groundwater quality and reports its findings in quarterly and annual reports, as well as in annual groundwater remedy effectiveness evaluation reports. In general, new wells are sampled quarterly for two years and then incorporated into the annual sampling schedule. The number and type of wells monitored in each zone or area are summarized in Table 2 below. The DTSC also provides monthly reports to the Santa Ana Water Board, USEPA, and the Santa Ana Watershed Project Authority on the operation and effectiveness of the groundwater pump-and-treat system.

Table 2. Monitoring Well Schedule						
		Well Type				
Zone or Area	Number of Wells	Monitoring Well	Extraction Well	Piezometer	Extraction Sump	Water Supply Well
1A	134	85	43	0	6	-
1B	75	52	10	13	-	-
2	35	27	8	0	-	-
3	132	120	12	0	-	-
4	161	127	5	29	-	-
USEPA Area 1/2	31	31	0	0	-	-
Total	568	442	78	42	6	-

In 2005, the DTSC initiated surface water sampling to evaluate perchlorate concentrations in storm water runoff in Pyrite Creek and its tributary channels. Currently, surface water sampling and reporting are executed pursuant to the *Final Surface Water Sampling and Analysis Plan* and are performed during qualifying storm events, which are classified using the following criteria: at least 72 hours of dry weather have elapsed since a previous storm event and a storm event produces sufficient runoff during daylight hours to perform sampling. Watermaster collects all relevant groundwater and surface water data from the DTSC's Stringfellow LIMS Database on a bi-annual basis as part of its Chino Basin Data Collection effort. These data are periodically used by Watermaster to support its basin management initiatives.

¹⁶ Ramboll US Corporation. (2021). *Pyrite Canyon Groundwater Flow Model.* Prepared for California Department of Toxic Substances Control. January 27, 2021.

¹⁷ Kleinfelder. (2016). *Final Sitewide and Surface Water Monitoring Plan and Sampling and Analysis Plan Stringfellow Superfund Site, Jurupa Valley California*. Prepared for California Department of Toxic Substances Control. July 19, 2016.

¹⁸ Geo-Logic Associates. (2016). *Final Surface Water Sampling and Analysis Plan; Stringfellow Superfund Site*. Prepared for California Department of Toxic Substances Control. July 2016.

RECENT ACTIVITY

The most recent groundwater monitoring report, the 2024 Annual Groundwater Sampling and Analysis Report was submitted by the DTSC to the USEPA on February 11, 2025.¹⁹ Groundwater levels and groundwater-quality samples were collected from 338 wells and piezometers. Groundwater quality samples and level measurements were unable to be collected at 39 of the other scheduled wells for various reasons such as access restrictions and insufficient water.

The most recent surface water monitoring report, the 2023-2024 Annual Surface Water Sampling and Analysis Report was submitted by the DTSC to the USEPA on February 11, 2025.²⁰ The report provides a summary of two stormwater monitoring events for the 2023-2024 rain year. The results from the 2023-2024 stormwater monitoring events are available on EnviroStor, however, the annual surface water monitoring report for 2023-2024 has not yet been submitted to the Santa Ana Water Board.

The *Groundwater Monitoring Well Abandonment Workplan for Wells FC-1054A and FC-1054D* was submitted by the DTSC on June 9, 2025.²¹ The workplan presents the proposed scope of work to abandon wells FC-1054A and FC-1054D due to their proximity to ongoing construction of the new Jurupa Road and underpass at the Van Buren Boulevard. The DTSC will evaluate replacement of these two wells following completion of the underpass. Well abandonment was planned for the week of June 9, 2025. The well abandonment report has not yet been uploaded to Envirostor.

The most recent *Annual Groundwater Monitoring and Remedy Effectiveness Evaluation Report* was for 2021 and was submitted by the DTSC on August 29, 2025.²² The report concludes that the remedial actions have been effective in reducing contaminants by removing a substantial mass of solutes. Between 2009 and 2021, 1,751 pounds of TCE, 327 pounds of chloroform, and 198 pounds of perchlorate were removed from groundwater at the site via the treatment systems.

On August 29, 2025, the DTSC submitted a revised Draft Zone 4 Feasibility Study Report to the USEPA (Zone 4 Feasibility Study). This is the eighth revision of the Zone 4 Feasibility Study to develop and evaluate remedial alternatives for the synthetic perchlorate plume. The feasibility study has been supported by multiple investigations and assessments conducted since 2004, including the most recent *Zone 4 Data Gap Investigation* and *Zone 4 Monitored Natural Attenuation Technical Memorandum*.^{23,24} The Zone 4 Feasibility Study includes five potential remedial alternatives ranging from no further action to combinations of additional extraction and treatment and in-situ biological treatment. This Zone 4 Feasibility Study will support the final remedial action for Zone 4 in the future ROD 5 (see Regulatory Order Section of this report).

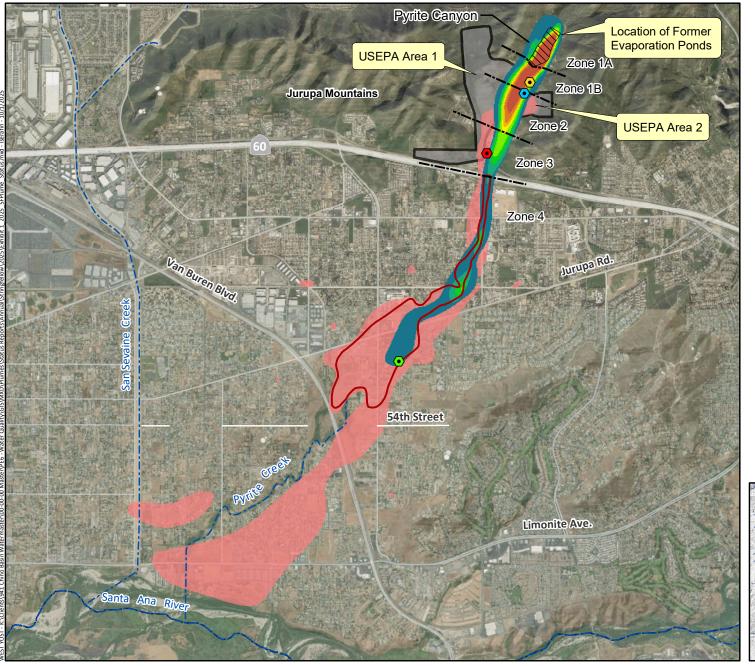
.

¹⁹ Geo-Logic Associates. (2025). *2024 Annual Groundwater Sampling and Analysis Report, Jurupa Valley California*. Prepared for California Department of Toxic Substances Control. February 11, 2025.

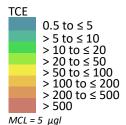
²⁰ Geo-Logic Associates. (2025). 2023-2024 Annual Surface Water Sampling and Analysis Report, Stringfellow Superfund Site, Riverside County, California. Prepared for California Department of Toxic Substances Control. February 11, 2025.

²¹ Geo-Logic Associates. (2025). *Groundwater Monitoring Well Abandonment Workplan for Wells FC-1054A and FC-1054D, Jurupa Valley California*. Prepared for California Department of Toxic Substances Control. June 9, 2025.

²² Kleinfelder. (2025). Draft *2021 Annual Groundwater Monitoring and Remedy Effectiveness Evaluation Report, Stringfellow Superfund Site*. Prepared for California Department of Toxic Substances Control. August 29, 2025.


²³ Kleinfelder. (2022). *Revised Final Zone 4 Monitored Natural Attenuation Technical Memorandum,* Jurupa Valley California. Prepared for California Department of Toxic Substances Control. May 26, 2022

²⁴ Kleinfelder, Inc. (2023). *Final Zone 4 Data Gap Investigation Report Jurupa Valley California*. Prepared for California Department of Toxic Substances Control. August 30, 2023.


Chino Basin Watermaster October 2025

The DTSC continues to keep the Jurupa Valley community informed about ongoing remediation and monitoring efforts at the Stringfellow Site through its annual *Community Update Fact Sheet*. The most recent fact sheet was completed in October 2024.²⁵ In addition, DTSC and the USRPA host quarterly Stringfellow Advisory Committee meetings to provide updates and engage with the public. The latest meeting was held on July 23, 2025. Meeting materials—including the agenda, presentation, notes, and handouts—are available on EnviroStor Stringfellow page on the Community Involvement section. The operations update for the most recent Committee meeting reported a total of 51,957,006 gallons of water were pumped and treated in 2024. As of June 2025, 21,537,729 gallons have been treated so far this year

²⁵ California Department of Toxic Substances Control. (2024). *Community Update: Stringfellow Superfund Site*. October 2024.

Maximum Concentration (μgL) July 2019 - June 2024

(Delineated by Watermaster in the 2024 State of the Basin Report)

Extent of Perchlorate Plume (≥ 6 µgl)

Undifferentiated Perchlorate Plume
Delineated by Kleinfelder in the 2021 Annual
Groundwater Monitoring and Remedy Effectiveness
Evaluation Report (2025)

Zone 4 Pyrite Canyon Synthetic
Perchlorate Plume

Delineated by Kleinfelder in the Final Zone 4 Data Gap Investigation Report (2023)

Groundwater Treatment Facilities

- Pyrite Canyon Treatment Facility
- Pre-Treatment Plant
- Lower Canyon Treatment Facility
- Community Wellhead Treatment System
- ---- Boundary Between Remediation Zones
- Streams & Flood Control Channels

Prepared by:

Prepared for:

